
Exploring Computation-Communication Tradeoffs
in Camera Systems

Amrita Mazumdar∗, Thierry Moreau∗, Sung Kim†, Meghan Cowan∗,
Armin Alaghi∗, Luis Ceze∗, Mark Oskin∗, and Visvesh Sathe†

∗Paul G. Allen School of Computer Science & Engineering, University of Washington
†Department of Electrical Engineering, University of Washington
{amrita, moreau}@cs.washington.edu, sungk9@uw.edu,

{cowanmeg, armin, luisceze, oskin}@cs.washington.edu, sathe@uw.edu

Abstract—Cameras are the defacto sensor. The growing de-
mand for real-time and low-power computer vision, coupled
with trends towards high-efficiency heterogeneous systems, has
given rise to a wide range of image processing acceleration
techniques at the camera node and in the cloud. In this paper,
we characterize two novel camera systems that use acceleration
techniques to push the extremes of energy and performance
scaling, and explore the computation-communication tradeoffs
in their design. The first case study targets a camera system
designed to detect and authenticate individual faces, running
solely on energy harvested from RFID readers. We design a
multi-accelerator SoC design operating in the sub-mW range,
and evaluate it with real-world workloads to show performance
and energy efficiency improvements over a general purpose
microprocessor. The second camera system supports a 16-camera
rig processing over 32 Gb/s of data to produce real-time 3D-360◦

virtual reality video. We design a multi-FPGA processing pipeline
that outperforms CPU and GPU configurations by up to 10×
in computation time, producing panoramic stereo video directly
from the camera rig at 30 frames per second. We find that an
early data reduction step, either before complex processing or
offloading, is the most critical optimization for in-camera systems.

I. INTRODUCTION

Cameras are the backbone of data processing for applications
ranging from social media and entertainment, to surveillance,
biomedical devices, and autonomous vehicles. As these systems
continue to specialize and diversify, the traditional interface
between camera sensors and general-purpose processors limits
optimization for extreme visual computing applications. Typi-
cally, architects employ one of two solutions to enable compute-
heavy vision: on-device hardware acceleration, or cloud offload.
Hardware accelerators achieve improved performance and
efficiency at the cost of fixed functionality, while offloading
data to the cloud relaxes computational constraints at the
cost of data communication. The design tradeoff reduces to
balancing computation and communication constraints for a
given visual computing workload. In this paper, we investigate
two end-to-end camera systems that push the boundaries of
energy efficiency and performance, under these lenses of
computation and communication costs. For each system, we
focus on holistically evaluating the full system and computation-
communication tradeoffs across parts of the processing system
via “in-camera processing pipelines.”
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Fig. 1. Hypothetical in-camera pipeline with opportunities for acceleration.
This pipeline uses core blocks and some optional blocks, and offloads
computation to the cloud.

The first camera system is an ultra-low-power camera system
that recognizes specific users’ faces while running on harvested
radio frequency (RF) energy. The ability to run untethered from
a power source makes deployment simple, but pushes the design
constraints to the extreme end of ultra-low-power design.

The second camera system assembles immersive stereoscopic
virtual reality (VR) video processing in real time, requiring
significantly more compute and communication performance.
The system consists of 16 4K-resolution cameras, processing
hardware, and a network link. To deliver real-time VR video,
the system processes up to 32 Gb/s, making it impractical to
transmit the sensor data to a data center for real-time stereo
processing and stitching.

These systems push the bounds of camera system engineer-
ing, at opposing ends of the design space of camera systems—
extreme low power, and extreme performance. Both systems
decompose to pipelines of application-specific computation
blocks, like the generic in-camera processing pipeline of
Figure 1. By characterizing two extreme design points in a
common framework, we highlight how these data movement
considerations are common across the spectrum of camera
applications. Many other camera systems are likely to exist
between the power-constrained and high-bandwidth case studies
we investigate.

This paper makes the following contributions:
• A low-power face authentication accelerator for energy

harvesting cameras, with an ASIC evaluation on real-world
workloads.

• A real-time stereoscopic video assembly accelerator for
virtual reality, with a CPU, GPU and FPGA comparison.

• A joint evaluation of computation and communication
costs, demonstrating how adding more computation can
reduce the overall cost of accelerator-based image pro-
cessing architectures.



II. BACKGROUND AND RELATED WORK

In-camera processing is not new, and prior work has intro-
duced many in-camera processors [17]. Our analysis applies
in-camera processing pipelines to two highly-constrained appli-
cations: low-power face authentication and real-time VR video
streaming. In this section, we discuss our general approach to
analyzing image processing pipelines and review notable related
work in computation offloading, image processing hardware,
and similar accelerator designs.

In-camera processing pipelines. To characterize in-camera
systems in a holistic way, we decompose camera applications
into processing pipelines and evaluate the system at the level
of functional block, as shown in Figure 1. Considering camera
systems at the block granularity helps us gain insight into
deciding what processing steps should be included at the camera
node, and what implementations (e.g., ASIC, FPGA, GPU)
meet an application’s requirements. In the hypothetical pipeline
of Figure 1, blocks B1, B3, and B4 may be processed in-camera
while the output of B4 is offloaded to a central processor such
as a multicore or cloud processor. The block B2 is shown
excluded from the pipeline because it does not improve the
overall cost. We define the total cost of the pipeline as the sum
of computation costs for in-camera blocks (C1, C3, and C4)
and the communication cost (Cc) of offloading the output of
B4. We assume the cost of computing in the cloud as “free”
(relative to computation in the camera) but the cost to get data
to the cloud is not (e.g., the camera expends energy to send
data). Hence, one can view the main objective of computing
in-camera is to minimize both the data communicated and the
computational cost.

In-camera processing pipelines can include core blocks
essential to the application, and optional blocks, which may not
directly affect results but can improve efficiency by filtering or
pre-processing data. One optional block is the motion detection
block we use in our face authentication pipeline. While the core
block of the pipeline, face authentication, operates on every
input frame, an optional motion detection block can reduce
the bandwidth and ensuing power consumption of core blocks.

Computation offload. Offloading image processing com-
putation from mobile devices to the cloud is well-explored
in mobile systems [33]. The opposing case for “onloading”
computation, or keeping computation at the sensor, has grown
more popular due to increased image processing demand and
privacy concerns [16, 23]. Our approach explores the tradeoff
space between offload and onload for two constrained camera
systems.

Vision-centric architectures. The rise of computer vision
and computational photography has inspired a number of
computer architectures for efficient image processing. Flexible
vision architectures [5, 7, 10] provide higher performance for
image processing and vision applications while maintaining
programmability. Mobile SoCs like Qualcomm’s Snapdragon
provide image processing functionality for mobile cameras [30].
Vasilyev et al. [38] argue towards programmable image
processing solutions, but find that custom ASICs are still

more energy efficient. Consequently, we choose to explore
fixed-function hardware to meet the constraints of our ultra-
low-power or high-performance application targets.

We consider different classes of image processing accelera-
tors for the computational blocks in our case studies; we now
detail related work in each class.

In-sensor processing. Image sensor data is typically cap-
tured as an analog signal and converted to a digital signal
for processing. Recent work investigated how to improve
application efficiency by moving some preliminary processing
into the analog domain at the sensor node. Centeye, for instance,
executes analog computation on image sensor signals [1]. Other
work computed early layers of convolutional NNs at the pixel
level [8, 22]. Processing can also be performed in the mixed-
signal domain [2].

Face detection accelerators. We investigate the use of a
face detection accelerator as an optional block to filter data in
a face authentication pipeline. Hardware acceleration for the
Viola-Jones face detection algorithm has been well-explored for
FPGAs and GPUs [9, 18, 19]. While Bong et al. also present
a neural network design using Haar filters as a first step, our
work performs a more holistic characterization to optimize the
full camera pipeline [6].

Neural network accelerators. NNs have been studied
extensively for accomplishing face detection and recogni-
tion [14, 32, 35]. Researchers are actively working to improve
NN performance with custom hardware [12, 13]. ShiDian-
Nao [11], specifically, is a CNN accelerator executed in-camera,
where the accelerator is placed on the same chip as the image
sensor processor, achieving 320mW power consumption.

Depth from stereo accelerators. Depth from stereo algo-
rithms and their implementations have been well-explored [34].
Stereo vision has been accelerated to real-time with GPUs and
FPGAs, but application targets are either very lower resolution
or perform badly on defocusing workloads [37, 44].

In-camera compression. Compressing sensor data incurs
computation–communication tradeoffs related to this paper’s
analyses. In our VR pipeline, for instance, the output of some
blocks might have a better data locality than the previous step,
facilitating high compression rates, but lossy compression at the
early stages of the pipeline could result in quality degradations.
While we do not explicitly consider compression in our study,
compression can be treated as an optional block in in-camera
processing pipelines.

III. CASE STUDY: LOW-POWER FACE AUTHENTICATION

In this section, we characterize a continuous vision pipeline
for face authentication based on the WISPCam platform [26], a
battery-free camera powered by harvested energy. Face authenti-
cation (FA) is a core workload in user-centric continuous mobile
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Fig. 2. Face authentication with battery-free cameras.
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Fig. 3. NN microarchitecture and processing element details.

vision systems. In these systems, a camera captures image
frames at a continuous frame rate, and an on-node processor
performs face recognition on each frame to identify a single
user. We define the core FA function as: given a test face and
a reference, decide if the test face matches the reference face.

The WISPCam-based system captures an image at 1 frame
per second (FPS) and transmits it over RF, powered by an
internal capacitor with harvested RF energy. We examine
how leveraging progressive filtering hardware can dramatically
reduce the power consumption of such a system and enable
continuous face authentication at low cost. We construct our
FA pipeline around NN-based face authentication, as shown in
Figure 2. The pipeline has one core block, the NN, and several
optional blocks. We evaluate a low-power NN accelerator
design, as well as the benefits of including motion detection
and a pre-processing face detection accelerator to reduce input
bandwidth to the NN. Because energy efficiency is a primary
concern, we design the accelerators to be integrated on-chip
with the camera sensor, and processed streaming through the
CSI2 camera serial interface.

We first discuss each accelerator design individually, present-
ing their microarchitectures and the tradeoffs we investigated
in each design’s algorithm and hardware implementation. We
then evaluate them together on a real-world face authentication
workload using real video we collected.

A. Neural network face authentication

For our face authentication task, we investigate a systolic
NN design, based on SNNAP, and explore tradeoffs in neural
network (NN) topology, accelerator geometry, and datapath
width reduction [25].

NN algorithmic tradeoffs. We first examine how modifying
NN topology affects both classification accuracy and energy
dissipation. We explore the search space by training NNs with
Fast Artificial Neural Network Library [27] and measuring the
achieved accuracy and energy cost.

Increasing the number of layers and neurons directly impacts
the memory and computational requirements of the NN.
Varying the input size to the NN has a direct impact on
performance and accuracy. Using a 5× 5 low-resolution input
window for face detection will lead to a cheap 25-neuron
input layer, but results in poor accuracy. The largest input
size our NN supports, 20× 20 pixels, preserves more details,
improving the accuracy of the NN classifier significantly. This
comes at a cost: halving classification error incurs an order-
of-magnitude increase in energy. From this exploration, we
select the topologies that give us an optimal accuracy/energy

for x in range(0, image_width):
for y in range(0, image_height):

faces += classify(x,y,window)
window *= scale_factor
if window > image_size:

return
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Fig. 4. The face detection algorithm slides a window across an image and
repeatedly executes a classifier with stages of rectangular features.

compromise, a 400 − 8 − 1 NN topology with 400 inputs
neurons, 8 hidden neurons and 1 output neuron.

To evaluate accuracy tradeoffs, we trained a 400-8-1 NN
on 90% of LFW [20], a popular face recognition benchmark,
and tested its accuracy at recognizing a single person’s face
from the remaining 10%. Our evaluation indicates that with a
400−8−1 topology, we can achieve a 5.9% classification error
overall. As we discuss on our real-world evaluation, however,
our multi-stage approach and real-data workload lowers the
true miss rate of 0%, as the security workload presents many
less-challenging lighting and orientation scenarios.

NN microarchitecture. Our NN microarchitecture uses
a single processing unit with multiple processing elements.
Because our face authentication pipeline has wide layers, we
found that this design presented enough data parallelism to
keep functional unit utilization high for a single processing unit.
Figure 3 shows the datapath of a processing unit composed
of four 8-bit processing elements (PEs). A bus connects the
chain of processing elements to a sigmoid unit—a hardware
LUT-based approximation of a neuron’s activation function.
Each PE has its own weight memory that stores the synaptic
weights of the NN locally. The processing elements perform
multiply-add operations in a systolic fashion to evaluate the
matrix multiplication that composes each NN hidden and output
layer. A vertically micro-coded sequencer sends commands
to each processing element as inputs arrive and outputs are
produced to control data movement.

The NN hardware accelerator has a configurable number of
PEs, which we use to optimize the geometry of our accelerator.
We fix the frequency and voltage to 30MHz and 0.9V, and
explore the design tradeoffs between energy and throughput
using post-synthesis physical simulations. We find an energy-
optimal point at 8 PEs: any lower number of PEs introduces
scheduling inefficiencies, increasing energy consumption; too
many PEs results in underutilized resources and reduced
parallelism for the narrow network.

NN numerical accuracy tradeoffs. Power dissipation in the
memory and the PEs can be reduced by bit-width reduction.
We used fixed-point functional units and LUT-based approxi-



mations of mathematical functions to minimize power and area.
We study the impact of two precision knobs on application
accuracy: (1) sigmoid approximation and (2) data bit-width. We
evaluate error as absolute classification accuracy loss relative
to a NN implemented with floating-point arithmetic and precise
mathematical functions. We then evaluate fixed-point precision,
limiting ourselves to powers of two for memory alignment.

After examining the effect of approximating the sigmoid
function with a simple 256-entry look-up table (LUT), we
conclude that hardware approximation of the sigmoid function
has a negligible effect on accuracy. For datapath width,
both 16-bit and 8-bit implementations of the NN accelerator
result in a small 0.4% accuracy loss relative to a precise
floating-point implementation. The 4-bit datapath however
displays a significant accuracy loss on average (over 1%).
The reduction in datapath width from 16-bit to 8-bit leads to a
41% power reduction for an 8-PE configuration, so we select
8-bit datapaths as the optimal energy-accuracy point for our
NN implementation.

B. In-camera face detection

The Viola-Jones (VJ) face detection algorithm is a popular
computer vision algorithm for fast, accurate face detection [40].
It is widely used in face authentication and other situations
where frontal faces are expected and speed is preferred. The
algorithm detects faces by scanning a window across the image,
evaluating simple rectangular features within the window at
each window position. If enough of these features are found
at a single window position, then that window is identified as
a face. To account for faces of different sizes in an image, the
scanning window is scaled and passed over the scene multiple
times. The VJ algorithm is well-known because of its simplicity
and efficiency, and continues to perform well against more
complex algorithms including deformable parts models and
convolutional NNs on face detection [24].

The VJ algorithm is popular specifically because of its high
efficiency in non-face windows – the algorithm optimizes to
spend more computation on windows where there is likely to
be a face, rather than executing a uniform computation at every
window. This optimization is encoded in the cascade classifier
structure illustrated in Figure 4b, a nested decision tree where
progressive levels have increasingly more features to evaluate,
and the simple stages must be evaluated positively first before
continuing on. The cascading computational style makes VJ a
good fit for a pre-filtering accelerator.

VJ algorithm tradeoffs. We first tune the parameters
of the VJ algorithm in search of the optimal point in the
energy-accuracy tradeoff space. VJ classifiers are structured to
minimize computation in non-face windows, and executing a
full positive face detection incurs a larger computation cost.
The parameters of window scale factor, the size of the window
scanned looking for a face, and window step size, the space
between windows evaluated over the image, affect the number
of kernel invocations, as shown in Figure 4a. Varying these
parameters of window step size and window scale factor directly
impacts the energy and accuracy of this block. Conventional
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Fig. 5. Proposed Viola-Jones accelerator architecture.

implementations use a scale factor of 1.1 and a step size of 1,
which is inefficient at large window sizes when the features are
more insensitive to small changes in translation and scale. We
varied the scale factor between 1.05 and 2 and the window step
size between 1 and 16 and characterized how they impacted
accuracy and number of invocations. We also evaluated an
adaptive step size, where the step size is a percentage of the
window size, rather than a fixed value. Figure 4c shows our
results, where accuracy is normalized to the most fine-grained
parameter choice. We report accuracy via precision, the ratio
of correctly classified faces over all samples classified as a
face, recall, the ratio of classified faces over all true faces, and
F1 score, the harmonic mean of precision and recall. We find
that varying these parameters affects recall but not precision,
and thus choose a window scale factor of 1.25 and an adaptive
step factor of 2.5%. This parameter selection results in 86%
less invocations of the VJ classifier and no loss in accuracy
for our real-world workloads.

VJ streaming microarchitecture. A high-level block di-
agram of the microarchitecture is shown in Figure 5. The
accelerator design consists of two functional modules: (i)
the integral image accumulator, which transforms the image
for easy feature extraction, and (ii) the cascade classifier
implementation, which evaluates features and computes the
classifier result for an image window.

Many VJ accelerators exist in the literature for different
application domains and power envelopes. The key observation
that facilitates sub-mW power consumption for our accelerator
is to process the data in a streaming fashion, leveraging the
nature of the pixel stream. Classical VJ accelerator designs
store the input image in memory and compute the integral
image either in-place or writing it as a new image. Instead,
we design a functional unit to compute the integral image in
a stream-like pattern. Our integral image unit buffers each
row, adding it to a “last row” buffer and also consecutively
adding each pixel to its neighbor, as illustrated in Figure 5.
By computing the integral image for a whole image while
buffering just two rows, we use significantly less storage than
if we had buffered the whole image to compute the integral
image result: for our WISPCam workload, we use less than 1kB
to hold the necessary rows for integral image output, whereas
buffering the whole image would require a 57kB buffer. We
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Fig. 6. Impact of voltage scaling on energy consumption and frame rate of
the face authentication SoC.

also included a unit to transform face windows from integral
image form to standard images before they are transferred to
later stages of a camera pipeline.

C. Physical implementation and optimization

We implemented and synthesized our designs in Verilog
with the Synopsys Design Compiler and TSMC 65nm Gplus
Standard VT library, and performed place-and-route with the
Synopsys IC Compiler. We generated SRAM macros with
an ARM Advantage memory compiler. To obtain accurate
energy estimates, we measured the initiation interval of the
hardware pipelines in functional simulation and used power
dissipation numbers from PrimeTime-PX to derive energy.
To find the optimal system voltage, we derived the static
and dynamic components of the total system energy and
selected the minimum-energy voltage that still satisfies system
performance requirements. Because application’s performance
requirement of 1 FPS allowed the design to run slower than the
nominal frequency at 0.9V, we scaled the system voltage to sub-
threshold and derived the optimal voltage for the entire SoC.
We used the sub-threshold leakage-current relationship from
[42] and approximate system frequency based on prior low-
voltage 65nm SRAM implementations [29]. Figure 6 shows
that there is a leakage energy minima at 0.5V, but the dynamic
and total energies continue to decrease into the sub-threshold
region. Hence, we considered the optimal system voltage to
be the minimum voltage satisfying performance constraints.
For our application, we selected the 0.7V/28 MHz operating
point, which satisfies the WISPCam’s application performance
constraint of 1 FPS.

D. Experimental results

Table I describes the details of our evaluation. We compared
the performance and energy of our accelerator configuration
against a software baseline running on an MSP430, a low-
power microprocessor on the WISPCam. We wrote an NN
micro-benchmark trained for face authentication, and emulated

Fig. 7. Frames from our face authentication workloads.

execution on a synthesized OpenMSP430 design. We then
compared the performance of the NN and face detection (FD)
accelerators.

In our evaluation, system requirements constrain the baseline
choice: the MSP430 is the only processor operating within the
power constraints of current energy-harvesting systems. Higher-
performance embedded processors, while able to execute our
application with better performance than an MSP430, were
limited by the power budget required. In prior NN-accelerator
work, the most appropriate comparison is ShiDianNao [11],
which also operates at ∼300mW, still significantly higher-power
than our design.

Improvements over a single frame. We examined three
scenarios: (1) face authentication in software with the MSP430,
(2) face authentication solely with the NN accelerator and (3)
face authentication NN and FD accelerators. As expected, hard-
ware acceleration leads to substantial performance improvement
over a software implementation on an OpenMSP430 alone, and
that coupling the FD and NN accelerators further improves
both energy efficiency and speed. Specifically, hardware
acceleration results in 265× speedup and 442.146× energy
savings over software implementations of face recognition.
Much of this speedup can be attributed to parallelization; the
MSP430 can only run single-threaded applications, whereas
the NN accelerator can take advantage of the regular, intrinsic
parallelism of neural networks. Moreover, we carefully tune
the storage requirements of our accelerators, reducing leakage
energy and consequently overall energy.

Tradeoffs in computation and communication. To con-
sider the computation and communication power of our accel-
erators and the CPU baseline, we evaluated all configurations
of the face authentication pipeline on experimentally-collected
videos of real-world workloads. The dataset contains video
scenarios we crafted to be representative of mobile face
authentication in the wild, primarily surveillance-style security
videos of a lab and a videos from a wearable-style device with
an always-on camera. To match the system design requirements
of an energy-harvesting platform, we captured and processed
the video at 1 FPS. Figure 7 shows select frames.

Using these benchmarks and the power/performance charac-
teristics of our accelerators, we derived the input bandwidth
and resulting power consumption for each computational block
in every configuration of the system. To derive the cost to
offload image data, we used previously reported communication
power numbers [26]. Figure 8 shows our results for the full
system of image sensor capture, motion detection, FD, and
NN face authentication, comparing total power consumption
on combinations of the ASIC designs described in this section.
Because the CPU could not compute the face recognition kernel
on even one 400-pixel window at 1 FPS, we did not consider
the results in this section. The configurations including CPU
face authentication consume 2-5 orders of magnitude more
power overall than the full-ASIC design we implemented.

Figure 9 shows the detailed power breakdown between
computation and communication for the full system in silicon.
The computation power is the sum of power at that block and



TABLE I
FACE AUTHENTICATION SYSTEM PARAMETERS.

Experimental Parameters VJ Accelerator NN Accelerator OpenMSP430 [28]

Technology 65nm TSMC GP HVT Memory 1kB frame buffer Memory 512kB IM, 4kB DM Memory 2kB IM, 2kB DM
Tool Chain Synposys Datapath 16-bit custom logic Datapath 8×8-bit PEs ALU 16-bit with multiply
C Compiler TI msp430-gcc [21] Cascade 10×33 Sigmoid 256B LUT Power 181µW
SRAM ARM compiler + derivation Input 176×144 pixel stream Input 400-pixel image window Area 0.12mm2

Vdd Low-voltage, 0.7V Power 337µW Power 393µW
Freq 27.9MHz Area 0.06mm2 Area 0.38mm2

< 1% compute < 1% compute 90% compute 84% compute > 99% compute > 99% compute > 99% compute > 99% compute
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the processing blocks preceding it, and the communication
power is the cost to transfer the output of that block. As
expected, the computation power increases as more blocks
process the data while the communication power decreases,
but not at the same rate. Counterintuitively, the total power
increases by 28% after performing the NN, indicating that it is
more power-efficient to offload after motion and face detection,
rather than performing the full pipeline. Even though the
NN only needs to communicate a 1-bit response, the cost
of computation increases dramatically in comparison to the
decrease in communication power. This result indicates that it is
more cost-effective to offload the neural network than process
it in-camera, in this power-constrained application domain.

So, why not always offload neural networks? We examined
the extent to which different constraints in our design con-
tributed to our results. We found that if the communication
power cost per pixel grew by 2.68×, it would be more power-
efficient to perform the NN in-camera. Our evaluation sourced
communication power data from work using a directed RFID
reader, and RF-based energy harvesting systems may not always
deliver consistent power.
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Analysis of the video workloads highlights the benefits
and limitations of our filtering approach at the application
level. Importantly, the complete pipeline, consisting of motion
detection, VJ, and NN, did not eliminate any true faces in
any of our workloads. Using these filtering steps reduces data
bandwidth, but we find that the extent of the data reduction
could be improved. Motion detection often is triggered in
innocuous situations, such as when people pass by in a frame
or a mobile device is carried while walking. Our face detector
misclassifies many false positives as faces, and also detects
faces in static posters and photos. We examined the results of
one of our security authentication workloads to illustrate: out of
62 frames of video, 12 frames were accepted through a motion
detection block. In those 12 frames, the VJ detector passed forty
400-pixel face windows to the NN classifier. Visual inspection
of those 40 faces found that 10% were false positives—with a
perfect face detector that only detected true faces, the power
to offload or compute the NN on-device would be reduced.

To investigate the impact of image size on the tradeoff
between in-camera and offloading, we scaled our evaluation
from the low-resolution images produced by the WISPCam to
high-resolution mobile camera images. We found that keeping
the neural network in-camera became power-efficient at 8
megapixels or greater. Finally, while offloading data may be
more power-efficient, privacy and bandwidth concerns may lead
designers to opt for a more localized solution when processing
image data for face authentication tasks. These results indicate
that as mobile camera devices become more sophisticated,
architectures will have to become increasingly specialized to
deliver low-power in-camera results.

IV. CASE STUDY: REAL-TIME VIRTUAL REALITY VIDEO

In this section, we investigate the use of in-camera processing
for a high-performance, real-time panoramic stereo video
rendering application. As shown in Figure 10, the pipeline
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we consider takes as input the high-resolution camera feeds
from a rig of cameras, like Google Jump [3], and processes the
images into a 360◦ stereo pair viewed on a VR viewer, such
as Google Cardboard [15]. The goal is to produce high-quality
video streams at a frame rate of 30 frames/sec or more.

Many VR video pipelines pipelines require users to upload
camera streams to a cloud service or high-performance com-
puting system—this workflow prevents real-time applications
such as live VR video streaming. While real-time hardware
systems for processing VR video are becoming commercially
available [36, 39], these solutions provide either live panorama
processing or stereoscopic 3D, not both. In our design, we
evaluate the performance constraints of this multi-step pipeline
and investigate how much in-camera processing is required
to achieve real-time VR video generation. We evaluate how
processing at the camera node reduces the bandwidth required
for offloading, and how hardware acceleration facilitates a
real-time VR system.

Camera rigs for recording stereoscopic panorama videos
capture a multi-camera scene and compute a depth map for each
pair of cameras in the rig. These depth maps are composited
together from multiple pairwise-camera pipelines into a single
3D-360◦ video. For our application, we seek to meet a real-
time frame rate of 30 frames/sec, so we optimize our design for
the cost of throughput. We define the communication cost as
the bandwidth in and out of each block. Since all the pipeline
blocks and offloading can be pipelined, the slowest step will
dominate overall throughput. Among the blocks shown in
Figure 10, the depth estimation step has the lowest bandwidth
and throughput. In this section, we describe the depth estimation
algorithm used for this block, how we map the algorithm
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the quality of the output depth map, even at high image resolutions.

to a high-throughput accelerator, and evaluate the system’s
computation-communication tradeoffs towards real-time results.

A. Depth maps from bilateral-space stereo

We base our design for fast and accurate stereo processing on
the state-of-the-art bilateral-space stereo algorithm (BSSA) [4].
Typically, global stereo algorithms generate a depth map from
a pair of images by computing a rough disparity, or difference
in space, between pixels, and then refining that disparity until
a cost function has been minimized [34]. Instead of computing
disparities per-pixel, BSSA resamples the problem into a
different representation, bilateral-space, before computing the
disparity. In the bilateral domain, simple local filters are
equivalent to costly, global edge-aware filters in pixel-space—
consequently, disparity refinement is much faster in bilateral
space. We perform BSSA in a bilateral grid data structure,
where pixels are mapped to a grid vertex, or bin, in bilateral-
space. Filtering in the bilateral grid results in faster, higher-
quality output than comparable techniques [4].

We illustrate the operation of a bilateral filter in Figure 11.
For simplicity, we demonstrate a 1D signal, instead of a 2D
image signal. Our stereo algorithm seeks to smooth the noisy
signal of Figure 11a, which has a sharp edge. Applying a 1D
moving average on Figure 11a results in Figure 11b, which
has less noise and a smoothed-out edge. A bilateral filter
performs the same smoothing operation while preserving the
edge of Figure 11a. The signal is mapped to bilateral space
as in Figure 11c, where neighboring pixels with significantly
different intensity values will have a large distance in 2D-space.
Smoothing this signal in the bilateral domain with a 2D moving
average allows the signal to maintain edges. Figure 11d shows
the result after filtering in bilateral-space.
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Fig. 13. VR accelerator architecture on a Xilinx Zynq SoC.
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Instead of a simple filter like moving average, BSSA maps
a noisy depth map to a bilateral grid, refines the depth map by
solving an optimization problem, and remaps the bilateral-grid
result to pixel-space. Varying the number of pixels that map to
a grid vertex impacts the time to compute the stereo refinement
for a frame, and also the quality of the depth map. Figure 12
demonstrates the tradeoff between stereo image quality and
bilateral grid size to be processed for high-resolution input
images. Here, we scaled bilateral grid sizes from 4 pixels-per-
grid-vertex to 64 in each of three dimensions in a bilateral
grid and evaluated the resulting impact on quality using MS-
SSIM [41]. We find the resolution of the input images is less
impactful than choosing an appropriate grid size to balance
quality and computational complexity.

B. BSSA accelerator design on FPGAs

We design and implement our processing flow in Verilog
on the Xilinx Zynq-7020 SoC [43]. Figure 13 depicts the
high-level architecture of our system. We implement the initial
full pipeline in software to run on the Zynq’s CPU, and then
design an AXI-Stream-compliant FPGA accelerator for depth
refinement that can be invoked by the software. The CPU
prepares the bilateral-grid data structure with pixels mapped
to grid vertices, and transfers them via DMA to the FPGA
fabric. The hardware accelerator processes the vertices with
the bilateral-space filtering and streams them back to the CPU,
where the bilateral-grid-filtered result is converted into the
fully-processed depth map.

Figure 14 shows the processing break-down for our pipeline
in time consumption and the image data size produced by each
block. We find that the depth estimation block, B3, consumes
the greatest computation time as well as the largest amount of
data, from B2. We thus focus on applying FPGA acceleration
to this block, and then evaluate the impact of accelerating this
block on pipeline throughput.

Applying the computation of B3 to a high-resolution video
is equivalent to applying millions of blurs to the bilateral grid
representation of the video frames. Across a single frame, most
of these filters can run in parallel, so we designed streaming
compute units to run bilateral filters on a stream of grid
vertices. We find that BSSA requires at least 32-bit floating-
point precision to produce high-quality depth maps, and use
DSP units on the FPGA fabric to compute efficient floating-

TABLE II
REQUIREMENTS FOR FPGA ACCELERATION PLATFORM.

Resource Evaluation Target

System FPGA Model Zynq-7000 Virtex UltraScale+
FPGA (#) 1 16
Cameras 2 16

Per FPGA Logic 45.91% 67.10%
RAM 6.70% 17.60%
DSP 94.09% 99.98%
Clock (MHz) 125 125

point operations. Each compute unit requires 18 DSP units in
our design, so we can scale up to 12 parallel compute units on
the ZC702. However, we project that if we scale up to a top-
of-the-line Xilinx Virtex UltraScale+ FPGA, we can parallelize
up to 682 compute units, which are more than enough for real-
time operation. Table II summarizes the setup we use in our
evaluation and resource requirements for real-time performance
with a 16-camera system.

C. Evaluation

Experimental setup. We compare our FPGA results on the
Zynq platform to CPU and GPU baselines. The Zynq includes
a Dual ARM Cortex-A9 and a Xilinx FPGA, all fabricated
at TSMC 28nm technology. We implement the CPU baseline
on the Zynq’s Dual ARM Cortex-A9 as a proxy for a mobile-
grade CPU, and evaluate the GPU on an NVIDIA Quadro
K2200. Both baselines execute optimized BSSA code written
and tuned with Halide [31].

Methodology. We consider the throughput of the data output
as the “communication cost” for offloading, and the cost to
compute the pipeline block as the “computation cost”. We treat
the communication cost as fixed for each block; it is simply
the cost of offloading the data from each block, as shown
in Figure 14. For all blocks except disparity refinement, we
assume the computation cost to be the compute time evaluated
using the ARM CPU baseline’s performance numbers. We
average the compute time for the disparity refinement block
over five executions of the kernel over a frame. Because this
processing flow can be pipelined across frames in a video
stream, the “total cost” of the system can be considered to be
dominated by the lowest-throughput block of the system.

Computation-communication tradeoffs. Figure 15 shows
the runtime results of different pipeline configurations, uploaded
on a networked connection to a viewing device supporting at
least 30 FPS. We seek to uncover scenarios in which both
computation and communication surpass our minimum frame
rate of 30 FPS—if one or both costs falls below the threshold,
the system cannot support real-time operation.

For the first three scenarios, the cost of doing little compu-
tation before offloading is cheap, even on the ARM core, but
the communication cost for the raw captured data falls short
of our 30 FPS threshold. Computing the disparity refinement
in B3 is more costly, and the CPU and GPU implementations
are not fast enough to support real-time operation. Moreover,
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the cost of offloading the computed depth maps before image
stitching is significantly lower.

The computation cost of image stitching in B4 is marginal
compared to BSSA, as well, and the resulting FPS is virtually
the same. The data size to communicate after B4, however,
is much smaller, as illustrated in Figure 14, and is the only
data size small enough to support real-time uploading. We find
that the configuration with all the blocks processed in-camera
and B3 mapped to the FPGA is the only configuration where
both computation and communication pass the threshold and
support real-time processing.

Our analysis indicates that this camera system is primarily
constrained by network bandwidth. For our evaluation, we
assumed transfer speeds of 25 Gigabit Ethernet. As network
connections grow faster, our results will trend towards off-
loading computation right off the sensor. For instance, at a
hypothetical ultra-high-throughput network link of 400-Gb
Ethernet, the 16-camera output can be uploaded at 395 FPS,
reducing the efficiency incentive for in-camera processing in
this scenario.

V. CONCLUSIONS

Cameras have become the dominant sensor in mobile
systems, and complex image processing pipelines are now
standard. In this paper, we use the notion of “in-camera
processing pipelines” to thoroughly characterize the design
of two camera systems at the extreme ends of the energy
and performance scaling limits of current hardware. Our face
authentication camera system, for instance, runs entirely on
harvested energy, pushing the limits of ultra-low power compu-
tation. Our virtual reality camera system requires significantly
more in-camera processing and data communication resources
than traditional imaging platforms. Our results highlight how
design parameters for individual accelerators can influence
the full-system execution behavior, as well as shape decisions
about whether to process a computation block in the camera
or offload the computation.

We characterize in detail how even the most power-efficient
neural network design performs significantly better when
adding computation earlier in the pipeline to effectively filter
the image data. Our VR pipeline highlights how computational
stages that expand the data size are inefficient in isolation,
and can be better optimized in concert with their down-stream
components.

Power and performance constraints require increasingly
efficient computational platforms, and architects will continue
to look to hardware acceleration to enable challenging applica-
tions. As we demonstrate in this paper, even tightly-optimized
accelerators can fail to improve performance if they fail to
consider full-system communication challenges. Given the
growth of image data production and requirements of modern
vision and graphics algorithms, future applications require a full
system approach to maintain power and performance efficiency
of camera designs.
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