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Abstract—Similarity search is key to a variety of applications
including content-based search for images and video, recommen-
dation systems, data deduplication, natural language processing,
computer vision, databases, computational biology, and computer
graphics. At its core, similarity search manifests as k-nearest
neighbors (kNN), a computationally simple primitive consisting
of highly parallel distance calculations and a global top-k sort.
However, kNN is poorly supported by today’s architectures
because of its high memory bandwidth requirements.

This paper proposes an application codesign of a near-data
processing accelerator for similarity search: the Similarity Search
Associative Memory (SSAM). By instantiating compute units
close to memory, SSAM benefits from the higher memory band-
width and density exposed by emerging memory technologies. We
evaluate the SSAM design down to layout on top of the Micron
hybrid memory cube (HMC), and show that SSAM can achieve
up to two orders of magnitude area-normalized throughput and
energy efficiency improvement over multicore CPUs. We also
show SSAM has higher throughput and is more energy efficient
than competing GPUs and FPGAs.

Keywords-similarity search, k-nearest-neighbors, near-data
processing

I. INTRODUCTION

Similarity search is a key computational primitive found in

a wide range of applications, such as computer graphics [1],

image and video retrieval [2], [3], data mining [4], and computer

vision [5]. While much attention has been directed towards

accelerating feature extraction techniques like convolutional

neural networks, there has been relatively little work focused on

accelerating the task that follows: taking the resulting feature

vectors and searching the vast corpus of data for similar content.

In recent years, the importance and ubiquity of similarity

search has increased dramatically with the explosive growth

of visual content: users shared over 260 billion images on

Facebook in 2010 [6], and uploaded over 300 hours of video

on YouTube every minute in 2014 [7]. This volume of visual

data is only expected to continue growing exponentially [8],

and has motivated many new search-based graphics and vision

applications.

Similarity search manifests as a simple algorithm: k-nearest

neighbors (kNN). At a high level, kNN is an approximate asso-

ciative computation which tries to find the most similar content

with respect to the query content. At its core, kNN consists of

many parallelizable distance calculations and a single global

top-k sort, and is often supplemented with indexing techniques

to reduce the volume of data that must be processed. While

computationally simple, kNN is notoriously memory intensive

on modern CPUs and heterogeneous computing substrates

making it challenging to scale to large datasets. In kNN,

distance calculations are cheap and abundantly parallelizable

across the dataset, but moving data from memory to the

computing device is a significant bottleneck. Moreover, this

data is used only once per kNN query and discarded since

the result of a kNN query is only a small set of identifiers.

Batching requests to amortize this data movement has limited

benefits as time-sensitive applications have stringent latency

budgets. Indexing techniques such as kd-trees [9], hierarchical

k-means clustering [10], and locality sensitive hashing [11] are

often employed to reduce the search space but trade reduced

search accuracy for enhanced throughput. Indexing techniques

also suffer from the curse of dimensionality [12]. In the context

of kNN, this means indexing structures effectively degrade to

linear search for increasing accuracy targets.

Because of its significance, generality, parallelism, underly-

ing simplicity, and small result set, kNN is an ideal candidate

for near-data processing. The key insight is that a small

accelerator can reduce the traditional bottlenecks of kNN by

applying orders of magnitude data reduction near memory,

substantially reducing the need for data movement. While there

have been many attempts at processing-in-memory (PIM) in

the past [13]–[15], much of prior work suffered from DRAM

technology limitations. Logic created in DRAM processes

was too slow, while DRAM implemented in logic processes

suffered from poor retention and high power demands; attempts

at hybrid processes [16] resulted in the worst of both. PIM

architectures are more appealing today with the advent of die-

stacked memory technology which enables the co-existence of

an efficient DRAM layer and efficient logic layer [17].

We propose Similarity Search Associative Memory (SSAM)

which integrates a programmable accelerator on top of a Hybrid

Memory Cube (HMC) which is a recent high bandwidth, die-

stacked memory module. Semantically, a SSAM takes a query

as input and returns the top-k closest neighbors stored in

memory as output. We evaluate the performance and energy

efficiency gains of SSAM by implementing, synthesizing,

and simulating the design down to layout. We then compare

SSAM against current CPUs, GPUs, and FPGAs, and show

that it achieves better area-normalized throughput and energy

efficiency.

Our paper makes the following contributions: (1) A char-

acterization of state-of-the-art k-nearest neighbors including
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Fig. 1: Software application pipeline for similarity search: (a) feature extraction, (b) feature indexing, (c), query generation, (d)

index traversal (e) k-nearest neighbor search, (f) reverse lookup. Feature extraction and indexing is done offline.

both application-level and architectural opportunities that

justify acceleration. (2) An application-driven codesign of a

near-memory, vector processor accelerator architecture with

hardware support for similarity search on top of Hybrid

Memory Cube (HMC). (3) Instruction extensions to leverage

hardware units to accelerate similarity search.

The rest of the paper is organized as follows. Section II

introduces and characterizes the kNN algorithm. Section III

describes the SSAM architecture and the hardware/software

interface. Section IV outlines evaluation methodology, and

Section V presents results. Section VI discusses the cost of

specialization, SSAM’s utility beyond kNN, and comparison

with other near-data processing technologies. Section VII

discusses related work.

II. CHARACTERIZATION OF KNN

This section characterizes the kNN algorithm pipeline and

indexing techniques, and highlights the application-level and

architectural opportunities for acceleration.

A. Case Study: Content-based Search

A typical kNN software application pipeline for content-

based search (Fig. 1) has five stages: feature extraction,

feature indexing, query generation, k-nearest neighbors search,

and reverse lookup. In feature extraction (Fig. 1a), the raw

multimedia corpus is converted into an intermediary feature

vector representation. Feature vectors may represent pixel

trajectories in a video, word embeddings of a document [18],

or shapes in an image [19], and are extracted using feature

descriptors or convolutional neural networks [20]. While feature

extraction is important, it only needs to be performed once per

dataset and can be done offline; prior work has also shown

feature extraction can be achieved efficiently [21], [22]. In

indexing (Fig. 1b), feature vectors from feature extraction are

organized into data structures (discussed in Section II-C). At

query time, these data structures are used to quickly prune the

search space; intuitively, these data structures should be able

to reduce the search time from linear to logarithmic in the size

of the data. Indexing can also be performed offline and away

from the critical path of the query.

While feature extraction and indexing can be performed

offline, the query generation stage (Fig. 1c) of the search

pipeline occurs online. In query generation, a user uploads

a multimedia file (image, video, etc.) and requests similar

content back. The query runs through the same feature extractor

used to create the database before being passed to the search

phase. Once a query is generated, the search traverses the

indexing structures to prune away portions of the search space

(Fig. 1d). Indexing structures reduce the search space size but

trade accuracy for performance. The k-nearest neighbors stage

(Fig. 1e) then attempts to search through the remaining database

candidates for the most similar content in the database. The

kNN algorithm consists of many highly parallelizable distance

calculations and a global top-k sort. The similarity metric

employed by the distance calculation often depends on the

application, but common distance metrics include Euclidean

distance, Hamming distance [23], cosine similarity, and learned

distance metrics [24]. The final step in the pipeline is reverse
lookup (Fig. 1f) where the resulting k nearest neighbors are

mapped to their original database content. The resulting media

is then returned to the user.

B. Typical Workload Parameters

Prior work shows the feature dimensionality for descriptors

such as word embeddings [25], GIST descriptors [19], and

AlexNet [20] ranges from 100 to 4096 dimensions. For

higher dimensional feature vectors, it is common to apply

techniques such as principal component analysis to reduce

feature dimensionality to tractable lengths [26]. The number of

nearest neighbors k for search applications has been shown to

range from 1 (nearest neighbor) up to 20. Each kNN algorithm

variant also has a number of additional parameters such

as indexing technique, distance function, bucket size, index-

specific hyperparameters, and hardware specific optimizations.

To simplify the characterization, we limit our initial evalua-

tion to Euclidean distance and three real world datasets: the

Global Vectors for Word Representations (GloVe) dataset [25],

the GIST dataset [27], and the AlexNet dataset [20]. The GloVe

dataset consists of 1.2 million word embeddings extracted from

Twitter tweets and the GIST dataset consists of 1 million GIST

feature vectors extracted from images. We constructed the

AlexNet dataset by taking 1 million images from the Flickr

dataset [28] and applying AlexNet [20] to extract the feature

vectors. For each dataset, we separate a “training” set to build

the search index, and a “test” set of 1000 vectors used as

the queries when measuring application accuracy. We set the

number of neighbors to 6, 10, and 16 for GloVe, GIST, and

AlexNet respectively.
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C. Approximate kNN Algorithms Tradeoffs

We characterize three canonical indexing techniques employed

by approximate kNN algorithms: kd-trees, hierarchical k-

means, and multi-probe locality sensitive hashing (MPLSH).

Indexing techniques employ hierarchical data structures which

are traversed at query time to prune the search space. In kd-

trees, the index is constructed by randomly cutting the dataset

by the N vector dimensions with highest variance [29]. The

resulting index is a tree data structure where each leaf in

the tree contains a bucket of similar vectors and the depth

of the bucket depends on how tall the tree is limited to be.

Queries which traverse the index and end up in the same bucket

should be similar; multiple trees are often used in parallel with

different cut orders. Multiple leaves in the tree can be visited

to improve the quality of the search. To do this, the traversal

employs backtracking to check additional “close by” buckets

in a depth first search-like fashion. A user-specified bound

typically limits the number of additional buckets visited when

backtracking.

Similarly, in hierarchical k-means the dataset is partitioned

recursively based on k-means cluster assignments to form a

tree data structure [10]. Like kd-tree indices, the height of the

tree is restricted, and each leaf in the tree holds a bucket of

similar vectors which are searched when a query reaches that

bucket. Backtracking is also used to expand the search space

and search “close by” buckets.

Finally, MPLSH constructs a set of hash tables where each

hash location is associated with a bucket of similar vectors [30].

In MPLSH, hash functions are designed to intentionally cause

hash collisions to map similar vectors to the same bucket. To

improve accuracy, MPLSH applies small perturbations to the

hash result to create additional probes into the same hash table

to search “close by” hash partitions. In our evaluation, we

use hyperplane MPLSH (HP-MPLSH) which cuts the space

into random hyperplanes and set the number of hash bits or

hyperplane cuts to 20.

Each of these approximate kNN algorithms trade accuracy

for enhanced throughput. In kNN, accuracy is defined as SE ∩
SA/|SE |, where SE is the true set of neighbors returned by

exact floating point linear kNN search, and SA is the set of

neighbors returned by approximate kNN. In general, searching

more of the dataset improves search accuracy for indexing

techniques. To quantify the accuracy of indexing structures, we

benchmark the accuracy and throughput of indexing techniques

for the GloVe, GIST, and AlexNet datasets. We use the Fast

Library for Approximate Nearest Neighbors (FLANN) [10]

to benchmark kd-trees and hierarchical k-means, and Fast

Lookups for Cosine and Other Nearest Neighbors Library

(FALCONN) [31] to benchmark HP-MPLSH. For kd-trees and

hierarchical k-means we vary the number of leaf nodes or

buckets in the tree that backtracking will check, while for HP-

MPLSH we increase the number of probes used per hash table.

Each of these modifications effectively increases the fraction of

the dataset searched per query and lowers overall throughput.

The resulting throughput versus accuracy curves are shown

in Fig. 2, for single threaded implementations. In general,

our results show indexing techniques can provide up to

170× throughput improvement over linear search while still

maintaining at least 50% search accuracy, but only up to 13× in

order to achieve 90% accuracy. Past 95-99% accuracy, we find

that indexing techniques effectively degrade to linear search
(blue solid line). More importantly, our results show there

is a significant opportunity for also accelerating approximate

kNN techniques. Hardware acceleration of approximate kNN

search can either increase throughput at iso-accuracy by simply

speeding up the computation or increase search accuracy at
iso-latency by searching larger volumes of data.

D. Alternative Representations and Distance Metrics

We now discuss the impact of numerical representation and

distance metrics for kNN.

Fixed-Point Representations: Fixed-point arithmetic is much

cheaper to implement in hardware than floating point units.

To evaluate whether floating point is necessary for kNN, we

converted each dataset to a 32-bit fixed-point representation and

repeated the throughput versus accuracy experiments. Overall,

we find there is negligible accuracy loss between 32-bit floating-

point and 32-bit fixed-point data representations.

Hamming Space Representations: Recent work has shown

that Hamming codes can be an effective alternative for Eu-

clidean space representations [23], [32]. Binarization techniques

trade accuracy for higher throughput since precision is lost by

binarizing floating point values but increases throughput since

the dataset is smaller. Binarization also enables Hamming

distance calculations which are cheaper to implement in

hardware. In practice, carefully constructed Hamming codes

have been shown to achieve excellent results [32].

Alternative Distance Metrics: While the canonical distance

metric for kNN is the Euclidean distance, there are a number

of alternative distance metrics. Such alternative metrics include

Manhattan distance, cosine similarity, Chi squared distance,

Jaccard similarity, and learned distance metrics [24].

E. Architectural Characterization

To more concretely quantify the architectural behaviors of

kNN variants, we instrumented the baselines presented earlier

using the Pin [33] instruction mix tool on an Intel i7-4790K

CPU. Table I shows the instruction profile for linear, kd-

tree, k-means, and MPLSH based algorithms respectively.

Recall that linear search performance is still valuable since

higher accuracy targets reduce to linear search. In addition,

approximate algorithms still use linear search to scan buckets

of vectors at the end of their traversals. As expected, the

instruction profile shows that vector operations and extensions

are important for kNN workloads due to the many vector-

parallel distance calculations. In addition, the high percentage

of memory reads confirms that the computation has high

data movement demands. Approximate kNN techniques like

KD-trees and MPLSH exhibit less skew towards vectorized
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Fig. 2: Approximate kNN algorithms tradeoff accuracy for throughput (up and to the right is better).

TABLE I: Instruction mix profiles of kNN algorithms for GloVe

dataset.

Algorithm AVX/SSE Inst. (%) Mem. Reads (%) Mem. Writes (%)

Linear 54.75 45.23 0.44
KD-Tree 28.75 31.60 10.21
K-Means 51.63 44.96 1.12
MPLSH 18.69 31.53 14.16

instructions but still exhibit similar memory intensive behavior

and show vectorization is valuable.

III. SSAM ARCHITECTURE

Based on the characterization results in Section II, it is clear

that similarity search algorithms (1) are an ideal match for

vectorized processing units, and (2) can benefit from higher

memory bandwidth to support data-intensive execution phases.

We now present our SSAM module and accelerator architecture

which exploits near-data processing and specialized vector

compute units to address these bottlenecks.

A. System Integration and Software Interface

SSAM is a memory module that integrates into a typical system

similar to how existing DRAM are integrated as shown in Fig. 3.

A host processor interfaces with a SSAM module similar to how

it interacts with a DRAM memory module. The host processor

is connected to each SSAM module over a communication bus;

additional communication links are used if multiple SSAM-

enabled modules are instantiated. Since HMC modules can be

composed together, these additional links and SSAM modules

allows us to scale up the capacity of the system. A typical

system may also have multiple host processors (not shown) as

the number of SSAM modules that the system must maintain

increases.

To abstract the lower level details of SSAMs away from

the programmer, we assume a driver stack exposes a minimal

memory allocation API which manages user interaction with

SSAM-enabled memory regions. A SSAM-enabled memory

region is defined as a special part of the memory space

which is physically backed by a SSAM instead of a standard

DRAM module. A sample programming interface of how one

would use SSAM-enabled memory regions is shown in Fig. 4.

SSAM-enabled memory regions would be tracked and stored

in a free list similar to how standard memory allocation is

implemented in modern systems. Allocated SSAM memory
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Fig. 3: SSAM system integration (modifications in grey). SSAM

modules replace or coexist with standard DRAM modules.

// Example program using SSAM
int * knn(int * query, int *dataset,

size_t length, size_t dims, int k) {
//allocate buffer of SSAM memory
int * nbuf = nmalloc(length * dims);
nmode(nbuf, LINEAR);
nmemcpy(nbuf, dataset, length * dims

* sizeof(int));
nbuild_index(nbuf, params = NULL);
nwrite_query(nbuf, query);
//execute kNN search
nexec(nbuf);
int * result = nread_result(nbuf);
nfree(nbuf);
return result;

}

Fig. 4: Example program using SSAM-enabled memory regions.

Lower level hardware configuration details are abstracted away

from the programmer.

regions come with a set of special operations that allow the user

to set the indexing mode, in additional to handling standard

memory manipulation operations like memcpy. Similar to the

CUDA programming model, we propose analogous memory

and execution operations to use SSAM-enabled memory. Pages

with data subject to SSAM queries are pinned (not subject to

swapping by the OS).

B. SSAM Architecture and Hybrid Memory Cube

The SSAM architecture is built on top of a Hybrid Memory

Cube 2.0 (HMC) [34] to capitalize on enhanced memory
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Fig. 5: SSAM accelerator architecture. (a) HMC die organization (only 16 vaults shown, HMC 2.0 has 32), (b) SSAM logic

layer organization, (c) SSAM accelerator organization, (d) processing unit microarchitecture.

bandwidth. The HMC is a die-stacked memory architecture

composed of multiple DRAM layers and a compute layer. The

DRAM layers are vertically partitioned into a number of vaults
(Fig. 5a). Vaults are each accessed via a vault controller which

reside on a top-level compute layer. In HMC 2.0, the module

is partitioned into a maximum of 32 vaults (only 16 shown),

where each vault controller operates at 10 GB/s yielding an

aggregate internal memory bandwidth of 320 GB/s. The HMC

architecture also is composed of four external data links (240

GB/s external bandwidth) which send and receive information

to the host processor or other HMC modules. These external

data links allow one or more HMC modules to be composed

to effectively form a larger network of SSAMs if data exceeds

the capacity of a single SSAM module.

Our SSAM architecture leverages the existing HMC substrate

and introduces a number of SSAM accelerators to handle the

kNN search. These SSAM accelerators are instantiated on

the compute layer next to existing vault controllers as shown

in Fig. 5b. SSAM accelerators are further decomposed into

processing units (Fig. 5d). To fully harness the bandwidth

available, we replicate processing units to fully use the memory

bandwidth by measuring the peak bandwidth needs of each

processing unit across all indexing techniques. For kNN, we

expect to achieve near optimal memory bandwidth since most

data accesses to memory are large contiguously allocated blocks

such as bucket scans and data structures. Our modifications

are made orthogonal to the functionality of the HMC control

logic so that the HMC module can still operate as a standard

memory module (i.e. acceleration logic can be bypassed). Our

processing units do not implement a full cache hierarchy

since there is little data reuse outside of the query vector

and indexing data structure. Unlike GPUs cores, processing

units are not restricted to operating in lockstep and multiple

different indexing kernels can coexist on each SSAM module.

Finally, we do not expect external data links to become a

bottleneck as a vast majority of the data movement occurs

within SSAM modules themselves. As a result, we only expect

the communication network between the host processors and

SSAM units to consist of kNN results which are a fraction of

the original dataset size and configuration data.

C. Processing Unit Architecture

Each processing unit consists of a fully integrated scalar and

vector processing unit similar to [35] but are augmented with

several instructions and hardware units to better support kNN.

Fully-integrated vector processing units are naturally well-

suited for accelerating kNN distance calculations because they

are (1) able to exploit the abundant data parallelism in kNN

and (2) well-suited for streaming computations. Using vector

processing units also introduces flexibility in the types of

distance calculations that can be executed. The scalar unit is

better suited for executing index traversals which are sequential

in nature, and provides flexibility in the types of indexing

techniques that can be employed. Vector units on the other

hand are better suited for high throughput, data parallel distance

calculations in kNN. We use a single instruction stream to drive

both the scalar and vector processing units since at any given

time a processing unit will only be performing either distance

calculations or index traversals in kNN. For our evaluation, we

perform a design sweep over several different vector lengths:

2, 4, 8, and 16. We find that 32 scalar registers, and 8 vector

registers are sufficient to support our kNN workloads. Finally,

we use forwarding paths between pipeline stages to implement

chaining of vector operations.

We also integrate several hardware units that are useful for

accelerating similarity search. First, we introduce a priority
queue unit, implemented using the shift register architecture

proposed in [36], and use it to perform the sort and global

top-k calculations. For our SSAM design, priority queues are

16 entries deep. We opt to provide a hardware priority queue

instead of a software one since the overhead of a priority queue

insert becomes non-trivial for shorter vectors. Because of its

modular design, the priority queues can be chained to support

larger k values. Likewise, priority queues in the chain can also

be disabled if they are not needed. Second, we introduce a

small hardware stack unit instantiated on the scalar datapath

to aid kNN index traversals. The stack unit is a natural choice

to facilitate backtracking when traversing hierarchical index

structures. Finally, we integrate a 32 KB scratchpad to hold

frequently accessed data structures, such as the query vector and

indexing structures. We find that a modestly sized scratchpad

memory is sufficient for kNN since the only heavily reused
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TABLE II: Processing unit instruction set. (S/V) are scalar and vector instructions. (S) instructions are scalar only.

Type Instruction

Arithmetic (S/V) ADD, SUB, MULT, POPCOUNT, ADDI, SUBI, MULTI
Bitwise/Shift (S/V) OR, AND, NOT, XOR, ANDI, ORI, XORI, SR, SL, SRA
Control (S) BNE, BGT, BLT, BE, J
Stack Unit (S) POP, PUSH
Register Move/Memory Instructions (S/V) SVMOVE, VSMOVE, MEM_FETCH, LOAD, LOAD, STORE

New SSAM Instructions (S)PQUEUE_INSERT, (S)PQUEUE_LOAD, (S)PQUEUE_RESET, (S/V)FXP

data are the query vectors and indices (data vectors are scanned

and immediately discarded).

Unlike conventional scalar-vector architectures, we introduce

several new instructions to exercise new hardware units for sim-

ilarity search. The full instruction set is shown in Table ??. First,

we introduce priority queue insert (PQUEUE_INSERT), load

(PQUEUE_LOAD), and reset (PQUEUE_RESET) instructions

which are used to manipulate the hardware priority queue.

The PQUEUE_INSERT instruction takes two registers and

inserts them into the hardware priority queue as an (id,
value) tuple. The PQUEUE_LOAD instruction reads either

the id or value of a tuple in the priority queue at a

designated queue position, while the PQUEUE_RESET clears

the priority queue. We also introduce a scalar and vector 32-

bit fused xor-population count instruction (SFXP and VFXP)

which is similar to a fused multiply-add instruction. The

FXP instruction is useful for cheaply implementing Hamming

distance calculations and assumes that each 32-bit word is

32 dimensions of a binary vector. The FXP instruction is

also cheap to implement in hardware since the XOR only

adds one additional layer of logic to the population count

hardware. Finally, we introduce a data prefetch instruction

MEM_FETCH since the linear scans through buckets of vectors

exhibit predictable contiguous memory access patterns.

D. SSAM Configuration

We assume that the host processor driver stack is able to

communicate with each SSAM to initialize and bring up

SSAM devices using a special address region dedicated to

operating SSAMs. Execution binaries are written to instruction

memories on each processing unit and can be recompiled to

support different distance metrics, indexing techniques, and

kNN parameters. In addition, any indexing data structures are

also written to the scratchpad memory or larger DRAM prior

to executing any queries on SSAMs. Any large data structures

such as hash function weights in MPLSH or centroids in

hierarchical k-means are stored in SSAM memory since they

are larger and experience limited reuse. If hierarchical indexing

structures such as kd-trees or hierarchical k-means do not fit

in the scratchpad, they are partitioned such that the top half

of the hierarchy resides in scratchpad, and the bottom halves

are dynamically loaded to the scratchpad from DRAM as

needed during execution. A small portion of the scratchpad

is also allocated for holding the query vector; this region is

continuously rewritten as a SSAM services queries. If a kNN

query must touch multiple vaults, the host processor broadcasts

the search across SSAM processing units and performs the final

set of global top-k reductions on the host processor. Finally,

if SSAM capabilities are not needed, the host processor can

disable the SSAM accelerator logic so that it operates simply

as a standard memory.

IV. EVALUATION METHODOLOGY

This section outlines evaluation methodology to compare and

contrast SSAMs with competing CPUs, GPUs, and FPGAs. To

provide fair energy efficiency and performance measurements,

we normalize each platform to a 28 nm technology process.

SSAM ASIC: To evaluate SSAM, we implemented, synthe-

sized, and place-and-routed our design in Verilog with the

Synopsys Design Compiler and IC Compiler using a TSMC 65

nm standard cell library. SRAM memories were generated using

the ARM Memory Compiler. We also built an assembler and

simulator to generate program binaries, benchmark assembly

programs, and validate the correctness of our design. To

measure throughput, we use post-placement and route frequency

estimates and simulate the time it takes to process each of

the workloads in Section II-B. Each benchmark is handwritten

using our instruction set defined in Table II. For power and

energy efficiency estimates, we generate traces from real

datasets to measure realistic activity factors. We then use the

PrimeTime power analyzer to estimate power and multiply by

the simulated run time to obtain energy efficiency estimates.

Finally, we report the area estimates provided in the post-

placement and route reports normalized to a 28 nm technology.

Xeon E5-2620 CPU: We evaluate a six core Xeon E5-2620

as our CPU baseline. For each platform, we benchmark wall-

clock time using the implementations of kNN provided by the

FLANN library [10] for linear, kd-tree, and k-means based

search, and the FALCONN library for hyperplane MPLSH [31].

For power and energy efficiency measurements, we use an

external power meter to measure dynamic compute power.

Dynamic compute power is measured by taking the difference

between the load and idle power when running each benchmark.

Energy efficiency is then calculated as the product of the run

time and dynamic power. Estimates of the CPU die size is

taken from [37].

Titan X GPU: For our GPU comparison, we use an NVIDIA

Titan X Geforce GPU using a well-optimized, off-the-shelf

implementation provided by Garcia et al. [38]. We again record

wall-clock time, and measure idle and load power using a power

meter to measure run time and energy efficiency. We estimate

the die size of the Titan X from [39].
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TABLE III: SSAM accelerator power (uW) by module.
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SSAM-2 1.63 1.02 0.33 1.92 2.52 0.45 2.28 8.52
SSAM-4 1.56 1.00 0.32 2.16 3.24 0.44 2.82 9.98
SSAM-8 1.42 1.02 0.32 2.58 4.68 0.44 4.28 13.32
SSAM-16 1.45 0.84 0.51 3.80 6.97 0.41 7.09 19.62

TABLE IV: SSAM accelerator area (mm2) by module
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SSAM-2 1.07 0.52 1.20 20.70 1.35 4.76 0.92 30.52
SSAM-4 1.06 0.52 1.65 27.28 1.78 4.76 1.29 38.34
SSAM-8 1.04 0.51 3.55 43.53 2.64 4.76 2.18 58.21
SSAM-16 1.04 0.51 6.79 76.26 4.33 4.76 3.79 97.48

Kintex-7 FPGA: We measure the performance and energy effi-

ciency of our implementation on a Xilinx Kintex-7 FPGA using

Vivado 2014.5. We use post-placement and route frequency

estimates and simulated run times to estimate the throughput

of kNN on the FPGA fabric. For power measurements, we use

the Vivado Power Analyzer tool and refer to [40] for device

area estimates.

V. EVALUATION RESULTS

This section presents evaluation results for SSAM. For brevity,

we evaluate Euclidean distance kNN, then separately evaluate

different indexing techniques and distance metrics.

A. Accelerator Power and Area

Our post-placement and route power and area results are shown

in Table III and Table IV respectively for different processing

unit vector lengths and different submodules in the design. Area

and power measurements are normalized to 28 nm technology

using linear scaling factors. In terms of area, a large portion of

the accelerator design is devoted to the SRAMs composing the

scratchpad memory. However, relative to the CPU or GPU, the

SSAM acceleration logic is still significantly smaller. Compared

to the Xeon E5-2620, a SSAM is 6.23-15.62× smaller, while,

compared to the Titan X a SSAM is 9.84-24.66× smaller. For

comparison, the die size for HMC 1.0 in a 90 nm process

is 729 mm2 [17]; normalized to a 28 nm process, the die

size would be ≈ 70.6 mm2 which is roughly the same or

larger than our SSAM accelerator design1. In terms of power,

SSAM logic uses no more than a typical memory module

which makes it compatible with the power consumption of die

stacked memories. Prior work by Puttaswamy et al. [41] shows

temperature increases from integrating logic on die-stacked

memory are not fatal to the design even for a general purpose

core. Since SSAM consumes less power than general purpose

cores, we do not expect thermal issues to be fatal.

1Die size for HMC 2.1 are not publicly available.

B. Throughput and Energy Efficiency

We now report area-normalized throughput and energy ef-

ficiency gains across each platform for exact linear search,

which is agnostic to dataset composition and index traversal

overheads. This quantifies the gains attributed to different

heterogeneous computing technologies. Fig.s 6a and 6b show

the area-normalized throughput and energy efficiency of a

SSAM against competing heterogeneous solutions. The FPGA

and SSAM designs are suffixed by the design vector length; for

instance, SSAM-4 refers to a SSAM design with processing

units that have vector length 4. We observe SSAM achieves

area-normalized throughput improvements of up to 426×, and

energy efficiency gains of up to 934× over multi-threaded

Xeon E5-2620 CPU results. We also observe that GPUs and

the FPGA implementation of the SSAM acceleration logic

exhibit comparable throughput and energy efficiency. The

FPGA in some cases underperforms the GPU since it effectively

implements a soft vector core instead of a fixed-function unit;

we expect that a fixed-function FPGA core would fare better.

In terms of the enhanced bandwidth, we attribute roughly

one order of magnitude run time improvement to the higher

internal bandwidth of HMC 2.0. Optimistically, standard

DRAM modules provide up to 25 GB/s of memory bandwidth

whereas HMC 2.0 provides 320 GB/s. For similarity search,

the difference in available bandwidth directly translates to

raw performance. The remaining gains in energy efficiency

and performance can be attributed mostly to accelerator

specialization. To quantify the impact of the priority queue, we

simulate the performance of SSAM using a software priority

queue instead of leveraging the hardware queue. At a high

level, the hardware queue improves performance by up to 9.2%

for wider vector processing units.

C. Approximate kNN Search

We now evaluate the impact of approximate indexing structures

and specialization on throughput and energy efficiency. Fig. 7

compares the throughput versus accuracy curves for a SSAM

and Xeon E5-2620 CPU for each dataset. In general, at a

50% accuracy target we observe up to two orders of magnitude

throughput improvement for kd-tree, k-means, and HP-MPLSH

over CPU baselines. The kd-tree and k-means indexing struc-

tures are still dominated by distance calculations and benefit

greatly from augmented bandwidth when sequentially scanning

through buckets for neighbors. HP-MPLSH on the other hand is

composed of a combination of many hash function calculations

and bucket traversals; we find that for the parameter sets used

in our characterization, the performance of HP-MPLSH is

dominated mostly by hashing rate. However, the parameters

for HP-MPLSH can be adjusted to reduce the dependence on

hash performance by reducing the number of hash bits; this

would increase the number of vectors hashed to the same bucket

and shift the performance bottleneck from hashing performance

back to linear bucket scans.
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(a) Area-normalized throughput (b) Energy efficiency

Fig. 6: Area-normalized throughput and energy efficiency for exact linear search using Euclidean distance (higher is better).

Fig. 7: Area-normalized throughput versus accuracy for Euclidean distance kNN using indexing structures (up and to the right

is better).

TABLE V: Relative throughput of alternate distance metrics

over Euclidean distance.

Distance Metric GloVe GIST AlexNet

Euclidean 1× 1× 1×
Hamming 4.38× 7.98× 9.38×

Cosine similarity 0.46× 0.47× 0.47×
Manhattan 0.94× 0.99× 0.99×

D. Alternative Distance Metrics

We now briefly quantify the performance of alternative dis-

tance metrics on SSAM for three additional distance metrics:

Hamming distance, Cosine similarity, and Manhattan distance.

Unsurprisingly, binarizing data vectors and using Hamming

distance provides good throughput improvement (up to 9.38×),

since less data must be loaded to process a vector and

Hamming distances using the FXP instruction on SSAMs are

cheap. Manhattan distance and Euclidean distances have the

roughly same throughput since they require similar numbers of

operations. On the other hand, cosine similarity2 is about twice

as expensive as Euclidean distance because of the additional

numerator and divisor terms. Fixed-point division for cosine

similarity is performed in software using shifts and subtracts,

however the software division is still much cheaper than the

rest of the distance calculation.

2Cosine similarity is defined as (
∑

i aibi)
2/(

∑
i a

2
i

∑
i b

2
i ).

VI. DISCUSSION

This section evaluates the cost of specialization, the generality

of SSAM for other applications, and contrasts the SSAM

against other emerging near-data processing technologies.

A. Cost of ASIC Specialization

As Dennard scaling nears its end, power limitations have

accelerated the push towards specialization in domain-specific

architectures, especially for important applications in the

datacenter [42]–[45]. Recent work has shown that it is not

unprecedented to build specialized accelerators when general

purpose cores fail to meet viable peformance targets for

important applications [43]–[45]. To evaluate the monetary

cost viability of ASIC specialization for SSAM, we build

an analytical model to estimate the aggregate throughput of

a single CPU-based server, energy cost, and savings based

on our CPU results. We assume that the NRE cost of ASIC

specialization which includes mask and ASIC development

costs for a 28 nm process is $88 million [46]. We use our

multicore CPU implementation on an Intel Xeon E5-2620 as

our cloud CPU baseline, and profile queries with medium sized

GIST descriptors.

Recent data shows that Google handles in excess of 56,000

queries per second, of which up to 20% of all queries are

new and unique [47], [48]; we assume the remaining 80%

of queries are serviced by a front-end cache. While the

internal implementations of search engines are significantly

more complicated, the query rates serve as a good first order
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estimate of throughput demands. Our CPU baseline can service

the 11,200 unique queries per second with ∼1,800 machines,

using an estimated 118 kW-hrs per second of dynamic compute

power. Adapting the TCO analysis from [49], the baseline’s

total compute energy cost for servers alone would be $772

million over three years (assuming 6.9 cents / kWhr) [50]3.

SSAM-based servers would expend 0.7 kW-hrs per second on

the same workload for computation yielding a total compute

energy cost of $4.69 million over three years. As a result,

we conclude a widespread deployment of our accelerator is

potentially a cost-effective solution for similarity search, since

the cost per year of computation on CPUs is significantly higher

than the compute cost per year when using SSAM. Note that

this savings estimate does not account for additional overheads

that exist in a datacenter setting like mass storage devices,

additional memories, networking apparatus, and power supply

units but serves as a good first order estimate.

B. Index Construction and Other Applications

The SSAM is not limited to approximate kNN search and

can also be used for kNN index construction and other

data-intensive applications. In kNN, the overhead of building

indexing structures are generally amortized over the number of

queries executed; however, index construction is still three

orders of magnitude slower than single query execution.

Fortunately, SSAMs can be reprogrammed to also perform

these data-intensive tasks. Index construction also benefits from

near-data processing as techniques like k-means and kd-tree

construction require multiple scans over the entire dataset. For

instance, to train a hierarchical k-means indexing structure, we

execute k-means by treating cluster centroids as the dataset and

streaming the dataset in as kNN queries to determine the closest

centroid. While a host processor must still handle the short

serialized phases of k-means, SSAMs are able to accelerate the

data-intensive scans in the k-means kernel by exploiting the

enormous bandwidth exposed by performing the computation

near memory. Similarly for kd-tree index construction, SSAMs

can be used to quickly scan the dataset and compute the

variance across all dimensions. The host processor can then

quickly assign bifurcation points and generate the tree. In

both cases, the host processor must provide some control and

high level orchestration but the bulk of each application kernel

can be offloaded and benefits from the augmented memory

bandwidth.

SSAMs can also be used to accelerate other data-intensive

applications that benefit from vectorization and enhanced

memory bandwidth. Applications such as support vector

machines, k-means, neural networks, and frequent itemset

mining can all be implemented on SSAM. In particular, the

vectorized FXP instruction is useful for evaluation classes of

application which rely on many Hamming distance calculations

such as binary neural networks [51], and binary hash functions.

3Based on 2015 7-month average retail industrial cost/kW-Hr.

TABLE VI: SSAM and AP throughput comparison for linear

Hamming distance kNN.

Dataset GloVe GIST AlexNet

SSAM-4 (queries/s) 2059.3 480.5 134.10
First Generation AP (queries/s) 288 2.64 0.553

Second Generation AP (queries/s) 1117.09 10.55 0.951

C. Alternative Near-Data Processing Architectures

Near-data processing manifests in many different shapes and

forms. In this section, we briefly contrast our approach against

alternative near-data processing architectures.

Micron Automata Processor (AP): The AP is a near-

data processing architecture specialized for high speed non-

deterministic finite automata (NFA) evaluation [52]. Unlike

SSAM, the AP cannot efficiently implement arithmetic opera-

tions and is limited to distance metrics like Hamming distance

or Jaccard similarity. At a high level, the automata design is

composed of multiple parallel NFAs where each NFA encodes

a distance calculation with a single dataset vector as shown

in [53]. A query vector is streamed into the AP and compared

against all NFAs in parallel and sorted. In order to scale to

larger datasets, the AP can be reconfigured to process NFAs

that do not fit on in one configuration much like reconfiguration

on an FPGA. We briefly evaluate the AP by designing and

compiling a design for each dataset, and use the results to

estimate performance for an AP device against SSAM. Table VI

highlights the AP’s performance and energy efficiency results

against the SSAM design presented in this paper.

In general, we find that for first generation APs the large

datasets presented in this paper do not fit on one AP board

configuration, and as a result the AP is bottlenecked by the

high reconfiguration overheads compared to SSAM. With the

generous 100× faster reconfiguration times proposed in [53],

the AP is able to mitigate some these performance losses

but still struggles for very high dimensional descriptors like

AlexNet and GIST. For high dimensional vectors, each au-

tomata processor configuration can only fit a handful of vectors

at a time, which severely reduces the available parallelism the

automata processor is able to exploit. As a result, the automata

processor platform is best suited for smaller dimensional feature

vectors which allows it to better exploit available parallelism.

Compute in Resistive RAM (ReRAM): Computation in

ReRAM is an emerging near-data processing technique that

can perform limited compute operations in-situ by directly

exploiting the resistive properties of ReRAM memory cells [54].

This allows augmented computational capabilities beyond what

are available to DRAM-based near-data processing techniques

such as SSAM. Most notably, Chi et al. [55] has recently shown

how in-situ ReRAM computation can be used to accelerate

convolutional neural networks without moving data out of the

ReRAM cells themselves. As the technology matures, it would

not be unprecedented to replace DRAM in favor of ReRAM

and its augmented computing capabilities.

In-Storage Processing: There has also been a renewed interest

in instantiating computation near disk or SSD. Recent work
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such as Intelligent SSD [56], [57] and Biscuit [58] have

proposed adding computation near mass storage devices and

shown promising improvements for applications like databases.

However, compared to SSAM, in-storage processing architec-

tures target a different bandwidth to storage capacity design

point. Unlike SSAM, SSD-based near-data processing handles

on the order of terabytes of data at lower bandwidth speeds,

which is less ideal for latency critical applications like similarity

search.

Die-Stacked HMC Architectures: Instantiating an accelerator

adjacent to HMC is not a new proposal. Prior work has

shown that such an architectural abstraction is useful for

accelerating graph processing [59] and neural networks [60].

This architecture has several advantages over in-situ ReRAM

computation and the automata processor. First, by abstracting

the computation away from the memory substrate, the types

of computation that can be instantiated in the compute layer

are decoupled from the restrictions of underlying memory

implementations. Second, by separating the computation from

actual memory cells, this architectural abstraction achieves

much higher compute and memory density. This is unlike

substrates like the AP where compute and memory are both

instantiated in the same memory process resulting in both lower

memory density and suboptimal compute speeds.

VII. RELATED WORK

Near-data processing for similarity search has been studied in

the literature for decades, indicating ongoing interest.

CAMs: In the 1980s, near-memory accelerators were proposed

to improve the performance of nearest neighbor search using

CAMs [61]. Kohonen et al. [62] proposed using a combination

of CAMs and hashing techniques to perform nearest neighbor

search. Around the same time, Kanerva et al. [63] propose

sparse distributed memory (SDM) and a “Best Match Machine”

to implement nearest neighbor search. The ideas behind SDM

were later employed by Roberts in PCAM [61] which is, to our

knowledge, the first fabricated CAM-based accelerator capable

of performing nearest neighbor search on its own.

Algorithms that exploit TCAMs to perform content ad-

dressable search such as ternary locality sensitive hashing

(TLSH) [64] and binary-reflected Gray code [65] also exist.

However, TCAMs suffer from lower memory density, higher

power consumption, and smaller capacity than emerging

memory technologies. While prior work [66] shows promising

increases in performance, energy efficiency, and capacity,

TCAM cells are less dense than DRAM cells. For the massive

scale datasets in kNN workloads, the density disparity translates

to an order of magnitude in cost. Despite these limitations, there

is still active work in TCAMs for data-intensive applications

to accelerator associative computations.

Multiprocessor and Vector PIMs: In the late 1990s, Patterson

et al. [67] proposed IRAM, which introduced processing units

integrated with DRAM. In particular, Gebis et al. [68] and

Kozyarakis et al. [69] proposed VIRAM which used a vector

processor architecture with embedded DRAM. Similar to our

work, the intention of VIRAM was to capitalize on higher

bandwidth and reduce energy consumption by co-locating

MIPS cores with vector registers and compute units near

DRAM. Unlike VIRAM, SSAM does not implement a full

cache hierarchy, targets a different class of algorithms, and

uses a 3D die-stacked solution.

Kogge et al. [70] propose the EXECUBE architecture which

integrates general purpose cores with DRAM macros. Elliott

et al. [71] propose C-RAM which add SIMD processing

units adjacent to the sense amplifiers capable of bit serial

operations. Active Pages [15] and FlexRAM [14] envisioned

a programmable processing element near each DRAM macro

block which could be programmed for kNN acceleration.

However, none of these prior efforts directly addresses the kNN

search problems we discuss. More recently, Active Memory

Cube (AMC) [72] proposes a similar vector processing unit

and cache-less system on top of HMC. While both SSAM and

AMC arrive at the same architecture conclusion - that vector

PIM on die-stacked DRAM is useful - our work provides a

more application-centric approach which allows us to codesign

architectural features.

Application-Driven PIM: Application-justified PIM design

is not a new idea. Lipman and Yang [73] propose a DRAM-

based architecture called smart access memory (SAM) for

nearest-neighbor search targeting DB applications. Their design

tightly integrates a k-nearest neighbor accelerator engine and

has a microarchitecture that shares common elements with

our design. Similarly, Tandon et al. [74] propose an all pairs

similarity accelerator for NLP; however, their work integrates

their accelerator with the last level cache instead of memory.

The emergence and maturity of die-stacked memory has also

enabled a wide variety of PIM accelerator proposals [59], [72],

[75]–[78]. Chi et al. [75], Kim et al. [79], and Gao et al. [80] all

propose PIM solutions for accelerating neural networks. Ahn et

al. [59] propose PIM on top of HMC for graph processing, and

Hsieh et al. [76] and Zhang et al. [81] propose PIM-based GPU

architectures. Imani et al. [82] propose MPIM for linear kNN

search but their ReRAM model is limited to bitwise operations.

MPIM also neither considers nor evaluates the quality versus

accuracy tradeoffs in modern approximate kNN algorithms.

VIII. CONCLUSIONS

We presented SSAM, an application-driven near-data processing

architecture for similarity search. We showed that by moving

computation closer to memory, SSAM is able to address the

data movement challenges of similarity search and exploit

application codesign opportunities to accelerate similarity

search. While we used HMC as our memory backend, the

high-level accelerator design and insights still generalize to

alternative memory technology and in-memory processing

architectures. The PIM proposal presented in this paper is

also relevant to other data-intensive workloads, where data

movement is becoming an increasingly fundamental challenge

in improving system efficiency.
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