Exploring Computation-Communication Tradeoffs in Camera Systems

Amrita Mazumdar

Thierry Moreau Luis Ceze Sung Kim Mark Oskin Meghan Cowan Visvesh Sathe

Armin Alaghi

Camera applications are a prominent workload with tight constraints

Hardware implementations compound the camera system design space

camera system

DogChat™

We can represent camera applications as <u>camera processing pipelines</u> to clarify design space exploration

block 1

sensor

functions in the application

We can represent camera applications as <u>camera processing pipelines</u> to clarify design space exploration

sensor

image processing

DogChat[™]

feature tracking image rendering

Developers can trade off between computation and communication costs

sensor

image processing

DogChat™

offloaded to cloud

Developers can trade off between computation and communication costs

DogChat[™]

Optional and required blocks in camera pipelines introduce more tradeoffs

edge detection

sensor

image processing

Custom hardware platforms explode the camera system design space

Custom hardware platforms explode the camera system design space

ASIC

edge detection

DSP

Challenges for modern camera systems

Low-power: face authentication for energy-harvesting cameras with ASIC design

motion detection

Low latency: real-time virtual reality for multi-camera rigs with FPGA acceleration

prep

Challenges for modern camera systems

Low-power: face authentication for energy-harvesting cameras with ASIC design

motion detection

Low latency: real-time virtual reality for multi-camera rigs with FPGA acceleration

prep

Face authentication with energy harvesting cameras

WISP Cam energy-harvesting camera powered by RF 1 frame / second ~1 mW processing / frame

Face authentication with energy harvesting cameras

CPU-based face authentication neural networks can exceed WISPcam power budgets

sensor

on-chip CPU

neural network

other application functions

cloud

CPU-based face authentication neural networks can exceed WISPcam power budgets

adding optional blocks can reduce power consumption for a neural network

Exploring design tradeoffs in ASIC accelerators

neural network

Evaluated NN topology and har impact on energy and accuracy

Selected a 400-8-1 network topology and used 8-bit datapaths for optimal energy/accuracy point

many more details in paper!

face detection

eaming face detection celerator

Explored classifier and other algorithm parameters to optimize energy optimality

Evaluation Which pipeline achieves the lowest overall power?

Synthesized ASIC accelerators in Synopsys

Constructed simulator to evaluate power consumption on real-world video input

Computed power for computation and transfer of resulting data for each pipeline configuration

Which pipeline achieves the lowest power consumption?

pla	compu			
sensor				
sensor	motion			
sensor		face detect		
sensor			NN	
sensor	motion	face detect		
sensor	motion		NN	
sensor		face detect	NN	
sensor	motion	face detect	NN	

(ratios)

ute transfer

Which pipeline achieves the lowest power consumption?

pla	compu			
sensor				<1%
sensor	motion			<1%
sensor		face detect		10%
sensor			NN	16%
sensor	motion	face detect		>99%
sensor	motion		NN	>99%
sensor		face detect	NN	>99%
sensor	motion	face detect	NN	>99%

Which pipeline achieves the lowest power consumption?

pla	compu			
sensor				<1%
sensor	motion			<1%
sensor		face detect		10%
sensor			NN	16%
sensor	motion	face detect		>99%
sensor	motion		NN	>99%
sensor		face detect	NN	>99%
sensor	motion	face detect	NN	>99%

Which pipeline achieves the lowest power consumption?

pla	compu			
sensor				<1%
sensor	motion			<1%
sensor		face detect		10%
sensor			NN	16%
sensor	motion	face detect		>99%
sensor	motion		NN	>99%
sensor		face detect	NN	>99%
sensor	motion	face detect	NN	>99%

In-camera processing for face authentication

motion detection

- In isolation, even well-designed hardware can show sub-optimal performance
- Optional blocks can improve the overall cost, if they balance compute and communication better than the original design

Challenges for modern camera systems

Low-power: face authentication for energy-harvesting cameras with ASIC design

motion detection

Low latency: real-time virtual reality for multi-camera rigs with FPGA acceleration

prep

Challenges for modern camera systems

Low-power: face authentication for energy-harvesting cameras with ASIC design

motion detectior

Low latency: real-time virtual reality for multi-camera rigs with FPGA acceleration

prep

Producing real-time VR video from a camera rig

16 GoPro cameras 4K-30 fps 3.6 GB/s raw video

Goal: 30 fps 3D-360 stereo video 1.8 GB/s output

26

Producing real-time VR video from a camera rig

16 GoPro cameras 4K-30 fps 3.6 GB/s raw video cloud processing prevents realtime video Goal: 30 fps 3D-360 stereo video 1.8 GB/s output

27

VR pipeline is usually offloaded to perform heavy computation

need to accelerate "depth from flow" to achieve high performance

Offloading before the costly step doesn't avoid compute-communication tradeoffs

Evaluation Which pipeline achieves the highest frame rate?

Designed a simple parallel accelerator for Xilinx Zynq SoC, simulated for Virtex UltraScale+

Evaluated against CPU and GPU implementations in Halide

Assumed 2GB/s network link for communication

implementation details in paper

pipeline configuration					com
sensor					
sensor	prep				
sensor	prep	align			
sensor	prep	align	depth (CPU)		
sensor	prep	align	depth (GPU)		
sensor	prep	align	depth (FPGA)		
sensor	prep	align	depth (CPU)	stitch	
sensor	prep	align	depth (GPU)	stitch	
sensor	prep	align	depth (FPGA)	stitch	

pipeline configuration					comp	
	sensor					100
	sensor	prep				10(
	sensor	prep	align			10(
	sensor	prep	align	depth (CPU)		0.0
	sensor	prep	align	depth (GPU)		11.
	sensor	prep	align	depth (FPGA)		174
	sensor	prep	align	depth (CPU)	stitch	0.0
	sensor	prep	align	depth (GPU)	stitch	11.
	sensor	prep	align	depth (FPGA)	stitch	174
						-

³²

pipeline configuration					comp	
	sensor					100
	sensor	prep				10(
	sensor	prep	align			10(
	sensor	prep	align	depth (CPU)		0.0
	sensor	prep	align	depth (GPU)		11.
	sensor	prep	align	depth (FPGA)		174
	sensor	prep	align	depth (CPU)	stitch	0.0
	sensor	prep	align	depth (GPU)	stitch	11.
	sensor	prep	align	depth (FPGA)	stitch	174
						-

pipeline configuration					comp	
	sensor					100
	sensor	prep				10(
	sensor	prep	align			10(
	sensor	prep	align	depth (CPU)		0.0
	sensor	prep	align	depth (GPU)		11.
	sensor	prep	align	depth (FPGA)		174
	sensor	prep	align	depth (CPU)	stitch	0.0
	sensor	prep	align	depth (GPU)	stitch	11.
	sensor	prep	align	depth (FPGA)	stitch	174
						-

In-camera processing for real-time VR video

- Computation and communication together highlight benefits not seen when considered separately
- For VR video, in-camera processing pipelines enable applications that could not even be achieved via cloud offload

In-camera processing pipelines help characterize camera systems

In-camera pipelines evaluate computation-communication trade-offs

Use hardware-software co-design to balance constraints and optimize designs

Achieve optimal performance by considering bottlenecks in context of full system

Thank you!

