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video 
surveillance 
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3D-360 virtual 
reality camera 
rig

Camera applications are a prominent 
workload with tight constraints
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Hardware implementations compound 
the camera system design space

constraint

power

time size

bandwidth

implementation

ASIC
FPGA

DSP
CPU

GPU

3

camera system

DogChat™



We can represent camera applications as  
camera processing pipelines  
to clarify design space exploration

sensor block 1 block 2 block 3 block 4
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functions in the application
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DogChat™
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We can represent camera applications as  
camera processing pipelines  
to clarify design space exploration
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DogChat™

sensor image 
processing

face 
detection

feature 
tracking

image 
rendering

offloaded to cloud

Developers can trade off between 
computation and communication costs
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DogChat™

Developers can trade off between 
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Optional and required blocks in camera 
pipelines introduce more tradeoffs
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Custom hardware platforms explode 
the camera system design space
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Custom hardware platforms explode 
the camera system design space
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In-camera processing pipelines can help us 
evaluate these tradeoffs!



Challenges for modern camera systems 

Low-power: face authentication for energy-harvesting 
cameras with ASIC design 

Low latency: real-time virtual reality for multi-camera rigs 
with FPGA acceleration 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Face authentication with energy 
harvesting cameras

WISP Cam 
energy-harvesting camera


powered by RF

1 frame / second


~1 mW processing / frame
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Is this Armin? ✅
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Face authentication with energy 
harvesting cameras



sensor neural 
network

other 
application 
functions

on-chip CPU cloud
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CPU-based face authentication neural 
networks can exceed WISPcam power budgets



sensor neural 
network

other 
application 
functions

ASIC hardware cloud
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adding optional blocks can reduce power 
consumption for a neural network

face 
detection

motion 
detection

on-chip 
circuit 

CPU-based face authentication neural 
networks can exceed WISPcam power budgets



Exploring design tradeoffs in ASIC 
accelerators

Evaluated NN topology and hardware 
impact on energy and accuracy 


Selected a 400-8-1 network topology 
and used 8-bit datapaths for optimal 
energy/accuracy point
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 Explored classifier and other 
algorithm parameters to optimize 
energy optimality

neural network face detection

many more details 
in paper!



Synthesized ASIC accelerators in Synopsys


Constructed simulator to evaluate power consumption on 
real-world video input


Computed power for computation and transfer of resulting 
data for each pipeline configuration 
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Evaluation
Which pipeline achieves the lowest 
overall power?



Which pipeline achieves the lowest 
power consumption?
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platform configuration compute transfer
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Which pipeline achieves the lowest 
power consumption?
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Which pipeline achieves the lowest 
power consumption?
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platform configuration compute transfer
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Which pipeline achieves the lowest 
power consumption?
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platform configuration compute transfer
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In-camera processing for face 
authentication

In isolation, even well-designed hardware  
can show sub-optimal performance


Optional blocks can improve the overall cost, 
if they balance compute and communication 

 better than the original design
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Challenges for modern camera systems 

Low-power: face authentication for energy-harvesting 
cameras with ASIC design 

Low latency: real-time virtual reality for multi-camera rigs 
with FPGA acceleration 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16 GoPro cameras 
4K-30 fps 

3.6 GB/s raw video

Goal:  
30 fps 

3D-360 stereo video 
1.8 GB/s output

Producing real-time VR video 
from a camera rig
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16 GoPro cameras 
4K-30 fps 

3.6 GB/s raw video

Goal:  
30 fps 

3D-360 stereo video 
1.8 GB/s output

Producing real-time VR video 
from a camera rig

cloud processing 
prevents real-

time video
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offloaded to cloud

prep image 
align

depth 
from flow

image 
stitchsensor stream 

to viewer

VR pipeline is usually offloaded to 
perform heavy computation

5% 20% 70% 5%

processing time

need to accelerate “depth 
from flow” to achieve high 

performance
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avoid compute-communication tradeoffs
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Evaluation

30

Designed a simple parallel accelerator for Xilinx 
Zynq SoC, simulated for Virtex UltraScale+


Evaluated against CPU and GPU 
implementations in Halide


Assumed 2GB/s network link for communication

Which pipeline achieves the 
highest frame rate?

implementation 
details in paper



Which pipeline achieves the highest frame rate?
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pipeline configuration compute transfer
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Which pipeline achieves the highest frame rate?
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Which pipeline achieves the highest frame rate?
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Which pipeline achieves the highest frame rate?
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In-camera processing for 
real-time VR video

Computation and communication together highlight 
benefits not seen when considered separately


For VR video, in-camera processing pipelines enable 
applications that could not even be achieved via 

cloud offload
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In-camera pipelines evaluate computation-communication 
trade-offs 


Use hardware-software co-design to balance constraints and 
optimize designs


Achieve optimal performance by considering bottlenecks in 
context of full system

In-camera processing pipelines 
help characterize camera systems

Thank you!


