
Perceptual Compression for Video
Storage and Processing Systems

Amrita Mazumdar
University of Washington

Brandon Haynes
University of Washington

Magda Balazinska
University of Washington

Luis Ceze
University of Washington

Alvin Cheung
University of California, Berkeley

Mark Oskin
University of Washington

ABSTRACT

Compressed videos constitute 70% of Internet traffic, and video
upload growth rates far outpace compute and storage improvement
trends. Past work in leveraging perceptual cues like saliency, i.e.,
regions where viewers focus their perceptual attention, reduces
compressed video size while maintaining perceptual quality, but
requires significant changes to video codecs and ignores the data
management of this perceptual information.

In this paper, we propose Vignette, a compression technique and
storage manager for perception-based video compression in the
cloud. Vignette complements off-the-shelf compression software
and hardware codec implementations. Vignette’s compression tech-
nique uses a neural network to predict saliency information used
during transcoding, and its storage manager integrates perceptual
information into the video storage system. Our results demonstrate
the benefit of embedding information about the human visual sys-
tem into the architecture of cloud video storage systems.

CCS CONCEPTS

• Computer systems organization→ Cloud computing; • In-
formation systems→Multimedia information systems; Stor-
age management.

KEYWORDS

Storage management, video compression, video streaming

ACM Reference Format:

Amrita Mazumdar, Brandon Haynes, Magda Balazinska, Luis Ceze, Alvin
Cheung, and Mark Oskin. 2019. Perceptual Compression for Video Storage
and Processing Systems. In ACM Symposium on Cloud Computing (SoCC
’19), November 20–23, 2019, Santa Cruz, CA, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3357223.3362725

1 INTRODUCTION

Compressed videos constitute 70% of Internet traffic and are stored
in hundreds of combinations of codecs, qualities, and bitrates [2, 11].
Video upload growth rates far outpace compute performance and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6973-2/19/11. . . $15.00
https://doi.org/10.1145/3357223.3362725

storage production today, and this trend is predicted to acceler-
ate [12, 17, 43]. New domains of video production—e.g., panoramic
(360°), stereoscopic, and light field video for virtual reality (VR)—
demand higher frame rates and resolutions, as well as increased
dynamic range. Further, the prevalence of mobile devices with
high-resolution cameras makes it increasingly easy for humans to
capture and share video.

For decades, video codecs have exploited how humans see the
world, for example, by devoting increased dynamic range to spatial
features (low frequency) or colors (green) we are more likely to ob-
serve. One such perceptual cue, saliency, describes where in a video
frame a user focuses their perceptual attention. As video resolutions
grow, e.g., 360° video and 8K VR displays, the salient regions of a
video shrink to smaller proportion of the video frame [57]. Video
encoders can leverage saliency by concentrating bits in more per-
ceptually interesting visual areas. Prior work in saliency-enabled
encoders, however, focus only on achieving bitrate reduction or
quality improvement at the cost of complicated, non-portable proto-
types designed for a single codec implementation [22, 24, 40, 45]. In
this work, we address the challenges of storing and integrating this
perceptual data into cloud video storage and processing systems.

Large-scale video systems generally fall into two classes: enter-
tainment streaming, and social media video services; saliency-based
compression can provide benefits to both. For entertainment ser-
vices, which maintain small numbers of videos to be streamed at
many resolutions and bitrates, saliency-based compression reduces
the storage cost of maintaining many bitrates and resolution scales
of these videos. For social media services distributing a vast video
library from many users, it reduces outbound network bandwidth.
For both types of services, a system enabled to incorporate saliency
prediction can improve video compression, for instance, as an ini-
tially viral video decreases in popularity, or to reduce bandwidth
while streaming video to a 360° video player.

In this paper, we describe Vignette, a cloud video storage system
that leverages perceptual information to reduce video sizes and
bitrates. Vignette is designed to serve as a backend for large-scale
video services, such as content delivery systems or social media
applications. Vignette has two components: a compression scheme,
Vignette Compression, and a storage manager, Vignette Storage, as
shown in Figure 1. Vignette Compression leverages a new saliency-
based compression algorithm to achieve up to 95% lower bitrates
while minimally reducing quality. Vignette Storage uses a simple
API to trigger saliency-based compression when needed, allowing
applications to trade off between faster traditional compression and

https://doi.org/10.1145/3357223.3362725
https://doi.org/10.1145/3357223.3362725

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Mazumdar, et al.

Storage Transcoder
Compute

Storage Manager

End-User
Viewing

Streaming
Endpoint

Vignette
Storage Vignette Compression

Auto-generated
Perceptual Map

Figure 1: High-level architecture of Vignette. Vignette pro-

vides two features: Vignette Compression, a perceptual com-

pression algorithm, and Vignette Storage, a storage man-

ager for perceptually compressed videos. Integrating percep-

tual information with the storagemanager reduces network

bandwidth and storage costs.

Vignette’s smaller video sizes. The system uses low-overhead meta-
data, can be easily integrated into existing media storage structures,
and remains transparent to standard video applications.

Vignette is not a new standalone codec or compression standard.
Instead, it extends existing, modern codecs to take advantage of
the untapped perceptual compression potential of video content,
especially high-resolution video served in VR and entertainment
settings. As a result, off-the-shelf software and hardware acceler-
ators can decompress Vignette’s perceptually compressed videos
with no modifications. We implement Vignette as an extension to
LightDB [25], a database management system for video. Our proto-
type of Vignette demonstrates cost savings to cloud video providers
and power savings during mobile video playback.

This paper makes the following contributions:
(1) Systems support for perceptual video compression.Wepro-

pose Vignette, a system for producing andmanaging perceptually
compressed video data. Vignette videos are 80–95% smaller than
standard videos, consume 50% less power during playback, and
demonstrate little perceived quality loss.

(2) A forward-compatible perceptual encoding pipeline. Vi-
gnette leverages existing features of modern video codecs to
implement perceptual compression, and can be deployed in any
video processing system that supports such codecs, such as hevc
or av1.

(3) Custom storage for perceptual data. Vignette’s storage man-
ager efficiently stores and manages perceptually compressed
videos and is integrated in a modern video processing database
system. Vignette Storage supports both a heuristic-guided search
for fast perceptual compression and an exhaustive mode to com-
pute an optimal saliency-based compression configuration.

To our knowledge, this is the first work to consider storage man-
agement of perceptually-compressed video information. Using pre-
dicted saliency as a motivating perceptual cue, we evaluate the
limits of perceptual compression in a video storage system with a
collection of modern and high-resolution video datasets. Vignette’s
compression scheme uses a neural network trained to predict con-
tent saliency and an off-the-shelf hevc video encoder to reduce
bitrate requirements by 80–95%. Our results show that Vignette

can reduce whole-system power dissipation by 50% on a mobile
phone during video playback. Quantitative evaluation and user
study results validate that these bitrate and power savings come
with little perceived loss in video quality.

2 BACKGROUND: PERCEPTUAL

COMPRESSION USING SALIENCY MAPS

Saliency is a widely-utilized measure of the perceptual importance
of visual information. Saliency data encodes the perceptual impor-
tance of information in a video, such as foreground and background
or primary and secondary objects. Video codecs already use some
perceptual information, like motion and luminance, to improve
compression performance [58], but new modes of video viewing
(such as with a VR headset) introduce the opportunity to integrate
richer cues from the human visual system [36]. In this paper, we use
saliency as an example of one such perceptual cue to demonstrate
the potential of perceptual compression. This section provides back-
ground on saliency, compares methods for generating and encoding
saliency information, and introduces the machine learning tech-
nique Vignette uses to gather perceptual information about video
data. This section also describes tiles, the codec feature Vignette
uses to compress videos with saliency information.

2.1 Saliency Maps and Detection Algorithms

Saliency-detection algorithms visually highlight potential regions
or objects of significance in an image. A saliency map captures
likelihood of visual attention in the form of a heatmap, where the
map’s values correspond to the salience of pixels in the input. In
this paper, we visualize saliency prediction maps as grayscale video
frames or heatmaps for clarity.

In the past, algorithms could not predict saliency accurately
without detailed per-video annotation, such as hand annotation
or eye gaze logs. Moreover, the low latency and poor spatial res-
olution of eye-tracking devices prevented effective deployment
of eye-tracker-based saliency prediction [6]. VR headsets, how-
ever, allow for efficient deployment of eye tracking, and they have
motivated improvements in the performance and accuracy of eye
trackers [61]. Recent work in machine learning has produced ac-
curate saliency prediction models using neural networks trained
on eye tracker data that mimic the human visual system at levels
rivaling human prediction [9], motivating their use for saliency
prediction in this work.

To generate saliency maps for this paper, we used the neural net-
work model MLNet [13] running on the machine learning platform
Keras with Theano [10, 60]. MLNet is a state-of-the-art saliency
prediction neural network, and, when using the publicly-available
weights trained on the SALICON [29] dataset, achieves 94% ac-
curacy on the MIT300 saliency benchmark [7]. While the strong
performance of MLNet motivates its use in the design of Vignette,
our design allows for the replacement of MLNet with any other pre-
ferred saliency prediction method, as lower cost or higher accuracy
systems are developed.

Perceptual Compression for Video Storage and Processing Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

2.2 Systems Support for Perceptual Video

Compression

Prior work investigated many techniques for including predicted
saliency information in video compression, but these techniques
required significant changes to video codecs. For instance, some
maintain full-resolution, per-frame saliency maps to use as addi-
tional input [45], while others compute saliency prediction on-the-
fly at high computational cost [22] or solve complex optimization
problems to allocate video bits [40].

Rapid advances in both deep learning and video compression,
however, resulted in these integrated prediction-and-compression
codecs being quickly outmoded by the quality of both standard
video compression and saliency prediction techniques. Most criti-
cally for codecs, the saliency-enabled encoders lacked many latency
and quality optimizations of more recent codec releases and did not
guarantee functionality on already-existing hardware accelerators
on GPUs and mobile devices.

This paper takes a different approach, proposing a system that
supports software extensions for perceptual compression without
modifying the video codec. Instead of designing a new codec, we
propose shifting the burden from a single codec to the data man-
agement infrastructure, where decisions about hardware resources,
encoding optimization, and metadata management already occur.

2.3 Tiled Video Encoding

Vignette uses tiles to implement perceptual compression. Tiling a
video divides a single video stream into independent regions that are
encoded as separate decodable streams [49]. Encoders can code tiles
at separate qualities or bitrates, and decoders can decode tiles in par-
allel. Tiles are simple to express using standard encoding libraries,
like FFmpeg [5] and are supported by many video codecs. Restrict-
ing our implementation to native tiling features introduces some
loss of detail compared to designing a custom encoder. Standard
encoders only support rectangular tiles and cannot leverage motion
across tiles during encoding process. Using only native features,
however, guarantees that our compression scheme is compatible
with any modern codec that implements tiling, like hevc [58] or
av1 [18]. As video standards and codec efficiency improve, using
general codec features to perform encoding and manage storage
ensures that perceptual information remains useful.

3 VIGNETTE SYSTEM OVERVIEW

We designed Vignette to be easily deployed in existing video storage
systems and transparent to video applications that do not require
perceptual information. Figure 1 shows how Vignette can be de-
ployed on a video storage system, with Vignette Compression used
during the transcoding pipeline and Vignette Storage managing
the integration of perceptual information with video data.

3.1 Vignette Compression

Vignette Compression uses native features found in modern video
codecs. Our implementation of Vignette Compression produces
videos that work out-of-the-box with any system that supports
hevc [58], including hardware accelerators. Vignette Compression
perceptually compresses videos by enumerating configurations
of video tiles and saliency-quality correspondences to maximize

quality while minimizing video size. The algorithm has three high-
level steps: generate a perceptual data map (e.g., saliency prediction
map) for a given video file (§4.1), determine the optimal number of
rows and columns, or a “tile configuration”, to spatially partition
the video into (§4.2), and select a mapping of saliency values to
encoder qualities for each tile (§4.3).

3.2 Vignette Storage

Vignette Storage manages perceptual information as simple meta-
data embedded within videos or maintained in the storage system.
This reduces storage complexity for data management and ensures
Vignette data is transparent to saliency-unaware video applications
such as VLC or Optasia [44]. The storage manager supports the
following features: low-overhead perceptual metadata transmit-
ted alongside video content, without impeding the functionality
of applications that choose not to use it (§5.2), storage manage-
ment policies to trigger one-time perceptual compression during
“open loop” mode, and a heuristic-based search for faster perceptual
compression (§5.4).

4 VIGNETTE PERCEPTUAL COMPRESSION

DESIGN

Vignette Compression uses off-the-shelf video codec features to
encode perceptual information and improve coding efficiency. Our
technique takes a video as input, generates a per-frame percep-
tual map for the video, and aggregates the per-frame maps into a
single video saliency prediction map.1 Vignette Compression then
transcodes the input video with a tiled encoding, where the qual-
ity of each tile corresponds to the saliency of the same tile in the
video’s saliency prediction map. It uses only the native features
of the hevc [58] codec to ensure compatibility with other video
libraries. Whenever possible, it overestimates saliency to minimize
the potential of degrading video quality in areas of interest.

4.1 Automatically Generating Saliency Maps

Vignette Compression uses MLNet [13] to automatically generate
a corresponding saliency map for a video input. Figure 2 shows the
saliency map generated for a video frame and how the generated
maps capture the visual importance of a given video frame. The
process requires decoding the video and processing each frame
through the neural network to produce output saliency maps. Vi-
gnette Compression accumulates the per-frame saliency maps into
a single map by collecting the maximum saliency for each pixel in
the frame across the video file. These aggregated saliency values
produce a single saliency map of importance across the video. This
method uses more compute time than only generating saliency
maps for keyframes or at a fixed timestep, but it more generously
accommodates motion and viewpoint changes during a scene.

One concern for these aggregate heatmaps is that pixels may be-
come “saturated”. A “saturated” pixel contains its maximum value
(255), after which any additional saliency information would not
register during aggregation. Computing aggregate saliency maps
for long videos would potentially result in many “oversaturated”

1For clarity, we will use saliency prediction map and saliency map interchangeably in
the remainder of the paper, acknowledging that the maps used in discussion visualize
predicted saliency and not actual human-annotated saliency.

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Mazumdar, et al.

pixels from scene changes and motion. But video storage systems
slice videos into short segments (10-20 seconds) for coding effi-
ciency; as a result, these short-duration aggregate saliency maps
can be collected without oversaturating the saliency heatmap.

In comparison to a single video frame, Vignette’s aggregated
video saliencymap can indicate manymore salient pixels, especially
for videos that have fast-moving salient objects across frames. We
considered more motion-tolerant metrics like moving average, but
found that, for the domain of video distribution platforms, using
the most generous metric of maximum saliency provided the best
quality guarantee. In this case, using aggregate video saliency maps
with maximum saliency functions as a “worst-case” estimate of
salient regions.

4.2 Leveraging Saliency With Tiled Encodings

Once Vignette Compression produces a saliency map for a video, it
can perceptually encode videos with the tiling feature in hevc [58].
To produce saliency-based tiled video encoding, Vignette divides a
video segment spatially into tiles and then map each tile to a quality
setting. The saliency map’s value at each tile determines the tile’s
quality setting. For simplicity and generality, the tiling patterns used
are rectangular tiles with uniformwidth and height across the video
frame. Vignette uses the same tile configuration throughout the
entire 10-20 second video segment for coding simplicity. Intuitively,
larger tiles have better compression performance, but would allow
for less saliency levels to be encoded in the video. Vignette selects
the size and number of tiles in a tiling configuration based on either
an exhaustive search of all tile configurations or a heuristic-guided
search, described in §5.4.

While tiling is simple and provides coding benefits, a given tile
configuration can incur overheads from introducing suboptimal
encoding boundaries. Tiles are self-contained video units that can
be decoded separately. They cannot compress information beyond
per-tile boundaries. As a result, information that may be efficiently
coded using partial frames in a standard encoding must be repeated
if it appears in multiple tiles. A poor tile configuration produces
larger videos than a standard encoding pass with no tiling, espe-
cially for fast-moving scenes. We investigated this compression
inefficiency by encoding our test videos at various tiling configura-
tions with no change in quality (e.g. lossless encoding). We found
that the inclusion of tiling with no change in quality incurred ∼6-
15% overhead, depending on motion in the video sequence and
number of tiles used.

Vignette minimizes the penalty of adding tile boundaries in areas
that would benefit from being encoded together by exhaustively
enumerating all tile configurations. Vignette evaluates across all
row-column pairs a video frame allows to find the per-video best
tiling configuration. The hevc standard constrains the minimum
size of row and column tiles, which restricts the row-column tile
configurations allowed. In practice, we enumerate tile configura-
tions ranging from 2×2 to 10×10, compress the tiles according to
their saliency values, and measure the resulting bitrate and video
quality achieved. This exhaustive enumeration takes about 30 min-
utes per 15-second video to find the best tile configuration with our
experimental setup.

Enumerate tile
con.gurations

20%

100%

20%

75%

20% 20% 20%

60% 100% 60%

➊

➋ ➌ Select Pareto-optimal
tiling con.guration

Input video

Figure 2: Overview of Vignette Compression algorithm.

4.3 Mapping Saliency to Video Quality

Each hevc tile is encoded at a single ‘quality‘ or bitrate setting
throughout the video stream, requiring Vignette Compression to
select per-tile encoding qualities. Vignette deconstructs saliency
maps into per-tile parameters by mapping the highest encoding
quality to the maximum saliency value in the tile’s saliency map.
Selecting the video encoding quality that corresponds to a tile’s
saliency value is less straightforward. To do so, Vignette must
determine both how to express video quality during encoding and
how saliency should correspond with that quality metric.

hevc exposes different modes of controlling quality and bitrate,
such as constant bitrate or constant rate factor, with varying levels
of effort and efficiency. For evaluation simplicity, Vignette uses a
perceptually-controlled version of a target bitrate, where the target
bitrate either corresponds to the bitrate of the original video or is
specified by the API call. The highest-saliency tiles in the video
are assigned the target bitrate, and tiles with lower saliency are
assigned lower bitrates, with a minimum bitrate of 10% the original
video bitrate. As shown in Figure 2, Vignette Compression encodes
a 0-255 saliency map as discrete bitrates corresponding linearly
from the minimum to the target bitrate or quality. Because Vignette
supports standard codec features, target bitrate could be replaced
with a codec’s quality control, i.e. constant rate factor, as well.

5 VIGNETTE STORAGE SYSTEM DESIGN

We now describe Vignette’s storage manager for maintaining per-
ceptual video information. Vignette Storage uses low overhead
metadata to encode perceptual data and a heuristic-guided search
to reduce the compute load of generating perceptual transcodings.
Vignette Storage’s metadata representation reduces full-resolution
frames to a small number of bytes, and its heuristic search algo-
rithm reduces the time taken to find an optimal tile configuration
by ∼30× in our experiments.

5.1 Overview of Vignette Storage

Vignette Storage exposes perceptual video compression to applica-
tions by providing three features: (1) transparent perceptual meta-
data, (2) simple storage management policies, and (3) a search algo-
rithm that reduces transcoding cost. Vignette embeds perceptual
metadata as a side channel within the video container. Standard
video containers (i.e., mp4) encapsulate saliency information along
with video content, so that applications with and without percep-
tual support can decode Vignette videos. A 360° video player, for
example, can initialize videos to be oriented in the direction of a

Perceptual Compression for Video Storage and Processing Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

Off-the-shelf transcoding pipeline ➎➋

Original input
video

➊ Automatic saliency
map generation

➌ Perceptual transcoding➍

Output video

Frontend server /
Streaming endpoint

➏

End-user viewing➐

Figure 3: Vignette supports conventionally video transcoding pipelines as well as automatically generating saliency maps for

perceptually-aware video video transcoding.

video1.mp4

TLF Metadata (tlfd atom)
Type:
Points:
Spheres:
Saliency Map:

360TLF
<p - i/2, p + i/2>
<trak0>
trak1

Track 0 (trak atom)

Codec:
Projection:
Data:

HEVC
Equirectangular
stream0.hevc

(stsd atom)
(sv3d atom)
(dref atom)

GOP
0

GOP
1 …

Tiled Saliency Map bitstream
m
n
0x00 0x22 … 0xD3
0x01 0x1F … 0x03
…
0x00 0x02 … 0x00

Tile rows:
Tile cols:
Row 1:
Row 2:
…
Row m:

stream0.hevc

saliencymap.bin

GOP
2

Track 1 (trak atom)

VignetteCompression
Equirectangular
saliencymap.bin

(stsd atom)
(sv3d atom)
(dref atom)

Codec:
Projection:
Data:

GOP
n

GOP
0

GOP
1

GOP
2 … GOP

n

Figure 4: Physical layout of video metadata in LightDB.

Vignette-specific features are highlighted.

high-saliency region it decodes from Vignette metadata, but the
videos can also be played traditionally in a standard video player
like VLC.

Vignette Storage operates like similar large video management
services [28, 43, 47]. Upon upload, it chunks videos into segments,
typically 6-12 seconds in length. Each video segment consists of one
keyframe and an ensuing set of predicted frames. Vignette Storage
can perform perceptual compression on a per-video basis, or across
the video library when a specified condition is met (e.g., low storage
capacity, or video popularity decreasing beneath a threshold).

5.2 Saliency Map Metadata

Video storage systems maintain containers of compressed video
data that store relevant video features in metadata. Vignette Stor-
age adopts this approach, and injects a small amount (∼100 bytes)
of saliency metadata inside each video container. This map is en-
coded as a bitstring that includes fields for the number of rows
and columns used for tiled saliency and the saliency weights for
each tile. These bitstrings typically range in size from 8–100 bytes.
Figure 4 shows how this metadata is included as a saliency trak,
similar to other metadata atoms in a video container.

5.3 Vignette Storage API

The Vignette Storage API is shown in Figure 3. Table 1 shows the
programming interface for Vignette, which includes three perception-
specific operations: vignette_transcode(), vignette_squeeze(),

and vignette_update(). Each API operation ingests a video and
some required parameters and outputs a video with any generated
perceptual metadata encapsulated in the video container.

The Vignette API is linked into LightDB as a shared library.
System developers using Vignette Storage to manage video data
can write storage policies or preconditions to execute Vignette
Storage functions for a specific video or collection of videos. For
instance, a social media service could apply perceptual compression
as videos decrease in popularity to reduce storage capacity. A VR
video-on-demand service that ingested eye tracking information
could apply perceptual compression as new perceptual information
is collected for certain videos.

5.3.1 Transcode Functions. Transcode operations express the most
basic Vignette Storage function, video transcoding. When a new
video is uploaded to the storage system, the storage manager trig-
gers the general-purpose transcode() function to transcode the
video to any specified bitrates and formats for content delivery.
This function takes as input a video and target quality parame-
ter, expressed either by CRF or bitrate, and produces a regularly
transcoded video.

The vignette_transcode() function is the default saliency-
based API call. It takes as input a video and an optional quality
or bitrate target, and produces both a video and its correspond-
ing generated saliency metadata. When vignette_transcode is
triggered, Vignette Storage generates new saliency maps, and then
compresses the video according to the target quality expressed.

Vignette Storage’s transcode functions use similar signatures,
letting the system easily switch between regular and perceptual
compression when storage system pressure changes. Including
saliency information as a metadata stream included in the video file
container makes it transparent to saliency-agnostic applications or
commands like mediainfo or ffprobe.

5.3.2 Quality Modulation Functions. As noted in §4.3, Vignette
Compression maps saliency to quality levels for each tile. A call to
vignette_squeeze() will re-compress a video using a specified,
reduced bitrate or quality threshold. It takes in a video, target bi-
trate, and saliency mapping and produces the newly compressed
video. This function only executes transcoding and compression
with pre-generated saliency metadata, but does not update or gener-
ate new saliency metadata. The vignette_squeeze() function will
recompress videos from a higher quality mapping to a lower one,

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Mazumdar, et al.

Table 1: Vignette API

Function Compression Type Data required

transcode General <IN video, IN CRF/target bitrate, OUT video>
vignette_transcode Perceptual <IN video, (IN CRF/target bitrate,) OUT video, OUT saliency metadata>
vignette_squeeze Perceptual <IN video, IN CRF/target bitrate, OUT video>
vignette_update Perceptual <IN video, IN fixation map, OUT video, OUT saliency metadata>

but it will not transcode low-quality videos to a higher-quality map-
ping to avoid encoding artifacts. For example, a call to vignette_-
squeeze(input.mp4,100k) transcodes a video previously encoded
with saliency at a higher bitrate to a maximum of 100kbps in the
most salient regions. By leveraging the saliency metadata attached
to videos in Vignette Storage, vignette_squeeze() can avoid re-
encoding tiles that already are lower than the threshold bitrate. A
system can invoke vignette_squeeze() before video data is sent
to smaller cache or in preparation for distribution to devices with
smaller displays.

5.3.3 Functions for Updating Perceptual Maps. Vignette Storage
also supports updating saliency map with new information, such as
from eye tracking devices. To invoke this mode, Vignette Storage
uses the vignette_update() function to ingest and re-process
videos with new perceptual information. A 2-dimensional eye
tracker map can be used in the same way as the saliency map
input used in Vignette Compression, or it could be aggregated with
the existing saliency map metadata. Similar to how Vignette con-
structs per-video saliency maps, vignette_update() updates the
video’s saliency map with eye tracker information by executing a
weighted average of the original map and the input eye tracker map.
The update function takes in a fixation map and generates a new
metadata bitstream of saliency information that is attached to the
video container. Should a client want to re-encode a video based on
the updated saliency metadata, it could call vignette_squeeze()
after a vignette_update() call.

5.4 Heuristic Search for Tiling

Most of Vignette’s computation overhead comes from the exhaus-
tive search over tile configurations for a given video. This exhaus-
tive search is typically performed once, upon video upload, but
consumes significant processing time. Vignette Storage contributes
a lower cost search algorithm that achieves near-optimal results
with a ∼30× performance improvement, for situations where fast
saliency-based transcoding is required. Vignette Storage can switch
between the exhaustive search for optimal results or heuristic-
guided search for faster processing.

Vignette’s search technique uses motion vector information from
encoded video streams to estimate the size of video tiles. It enumer-
ates tile configurations that group regions of high motion together,
and selects a configuration minimizing the difference in motion
vector values across tiles. Vignette computes this difference by
evaluating the average standard deviation of motion vector values
within tiles and comparing to the best result seen. This heuristic
approximates the observation that high-motion areas should not
be divided across multiple tiles. We define the algorithm in more
detail in Algorithm 1.

Algorithm 1 Heuristic-based search for selecting a near-optimal
saliency tile configuration

1: procedure GenTileConfig(v) ▷Generate tiling for video v
2: bestStdDev←∞ ▷Initialize values
3: lastStdDev ←∞
4: bestConf iд←null
5: {maxRows,maxCols} ← {10, 10}
6: motionVectors ← MPEGFlow(v) ▷Extract motion vectors
7: for all {rows, cols} ← {1, 1}, {maxRows,maxCols} do
8: avдStdDev ← avgStdDev(motionVectors, rows, cols)
9: if avдStdDev ≤ bestStdDev then

10: bestStdDev ← avдStdDev
11: bestConf iд← {rows, cols}
12: end if

13: lastStdDev ← avдStdDev
14: ∆avдStdDev(motionVectors) ← lastStdDev−avдStdDev
15: if ∆avдStdDev(motionVectors)) ≥ .1 then
16: break

17: ▷Break if ∆avgStdDev is below difference threshold
18: end if

19: end for

20: return bestConf iд ▷Return best tile configuration
21: end procedure

The algorithm extracts motion vector information from encoded
videos using MPEGflow [34] and requires one transcoding pass.
Similar to the tile configuration search from §4.2, this heuristic
search exhaustively evaluates tile configurations of the motion
vectors. The search evaluates themotion encapsulated by tiles under
a configuration and chooses the configuration with the minimum
deviation of motion vectors in each tile. This heuristic approximates
the result of exhaustive encoding by leveraging the observation
good tile configurations are able to encapsulate redundant motion
or frequency information with a single tile, rather than replicate it
across tiles. Compared with an exhaustive search, which transcodes
a video hundreds of times to empirically produce the optimal tile
configuration, Vignette Storage’s algorithm produces a result ∼30×
faster than the exhaustive method and within 1 decibel (dB) of
the best-PSNR result when executed over the videos used in our
evaluation.

6 METHODOLOGY

We next describe the datasets, quality metrics, and technical setup
for our evaluation. We benchmarked across a range of video work-
loads (§6.2) and considered video quality metrics (§6.3) to holisti-
cally evaluate compression, quality, and performance.

Perceptual Compression for Video Storage and Processing Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

(a) Input video frame from the

Netflix dataset [39].

(b) Saliency map produced

by MLNet [13], overlaid on input.

(c) Perceptually-compressed Vignette

video, 85% smaller at iso-quality.

Figure 5: Example video still, neural network-generated saliency map, and output Vignette video.

6.1 Implementation

We implemented Vignette by extending LightDB [25], a database
management system for VR videos. LightDB lets developers declar-
atively express queries over large-scale video and uses a rule-based
optimizer to maximize performance. Developers can easily express
hevc-based saliency encoding in LightDB’s query language by
combining its Encode, Partition, and Subquery operators:
Decode("rtp://...")

>> Partition(Time,1,Theta,π/rows,Phi,2π/cols)
>> Subquery([](auto& partition) {

return Encode(partition, saliency_mappinд(
partition) })

>> Store("output");

In this example, Partition divides the input video into tiles, Encode
transcodes each tile with the corresponding saliency_mapping
value as an argument, and Subquery executes the given operation
over all the partitioned tiles. We also wrote our object recognition
queries for §7.2 in LightDB to simulate video analytics workloads.

In our experiments, we compared Vignette against the HEVC
encoding implementations included with FFmpeg. We configured
FFmpegwith support for software-based coding andNVENCODE [52]
GPU-based encoding of hevc video, as both are supported by large-
scale video services and devices [14].

Some datasets provided overencoded videos, or, reference videos
encoded at an very high bitrate that could be re-encoded to identi-
cal quality at a lower bitrate. To ensure against overencoding, we
transcoded each video using CPU-based hevc encoder and vary the
rate factor, selecting the highest PSNR-quality result as our base-
line for evaluation. We ran Vignette Compression on top of FFmpeg
version n4.1-dev, and use the GPU-based NVENC HEVC encoder
for tiled encoding. Unless otherwise specified, we targeted a con-
strained bitrate using maximum bitrate mode (VBV); while VBV
does not provide the best-quality archival results, it is commonly
used for entertainment or livestreaming due to its combination of
speed and quality.

We performed all experiments on a single-node server running
Ubuntu 16.04 and containing an Intel i7-6800K processor (3.4 Ghz, 6
cores, 15 MB cache), 32 GB DDR4 RAM at 2133 MHz, a 256 GB SSD
drive (ext4 file system), and a Nvidia P5000 GPU with two discrete
NVENCODE chipsets.

6.2 Video Datasets

We used a collection of video datasets, listed in Table 2, to evalu-
ate the impact of our techniques across different classes of video.

Table 2: Video datasets used to characterize Vignette.

Type Benchmark Description Bitrate (Mbps) Size (MB)

Standard vbench [43] YouTube dataset 0.53–470 757
Netflix [39] Netflix dataset 52–267 1123

VR VR-360 [42] 4K-360 dataset 10–21 1400
Blender [21] UHD / 3D movies 10–147 6817

Standard video formats and emerging VR formats comprise our
evaluation datasets. The former include representative workloads
from Netflix [39] and YouTube [43]. The VR and emerging video
datasets highlight demands of ultra high-definition (UHD) formats
such as 360◦ video [42] and the Blender stereoscopic and UHD
open source films [21]. To construct a representative sampling of
Blender video segments, we partitioned the movies in the Blender
dataset (“Elephants Dream”, “Big Buck Bunny”, “Sintel”, and “Tears
of Steel”) into 12-second segments, and selected five segments that
covered the range of entropy rates present in each film.

In this collection of datasets, we found that the vbench “desktop”
video, a 5-second computer screencast recording, performed poorly
during all compression evaluations because of its low entropy and
content style, so we excluded this outlier video from our evaluation
results. We discuss this style of video in relation to Vignette further
in §8. We also replaced Netflix’s single “Big Buck Bunny” video
segment with the same video content from Blender’s stereoscopic,
4K, 60 frames-per-second version of the video.

6.3 Quantitative Quality Metrics

We measured video encoding quality using two quality metrics,
peak signal-to-noise ratio (PSNR) and eye-weighted PSNR (EWP-
SNR). PSNR reports the ratio of maximum to actual error per-pixel,
in decibels (dB), by computing the per-pixel mean squared error
and comparing it to the maximum per-pixel error. PSNR is popular
for video encoding research, but researchers acknowledge that it
fails to capture some obvious perceptual artifacts [39]. Acceptable
PSNR values fall between 30 and 50 dB, with values above 50 dB
considered to be lossless [43]. For saliency prediction evaluations,
researchers developed eye-weighted PSNR to more accurately rep-
resent human perception [40]. EWPSNR prioritizes errors perceived
by the human visual system rather than evaluating PSNR uniformly
across a video frame. We computed EWPSNR using the per-video
saliency maps described in §4 as ground truth. While calculating

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Mazumdar, et al.

0%

5%

10%

15%

blender netflix vbench vr-360

Dataset

Pe
rc

en
ta

ge
 o

f O
ri

gi
na

l S
iz

e

Figure 6: Aggregate storage savings by dataset. Vignette

Compression reduces videos to 1–15% of their original size.

EWPSNR in this way does not faithfully measure “true” eye fixa-
tions, it still can assess “correctness” of our compression pipeline
and thus the efficacy of Vignette as a system for leveraging saliency.

7 EVALUATION

We designed our evaluation to answer the following questions:
(1) Storage: What storage and bandwidth savings does Vignette

provide? How do tile configurations affect compression gains
and quality? How does Vignette compare against traditional
saliency-based encoders?

(2) Quality of Service: How does Vignette’s compression tech-
nique affect quality of service (QoS) of video services like video
streaming (perceptual quality user study) or machine learning
(speed, accuracy)?

(3) Compute Overhead: What is the computational overhead of
Vignette’s compression algorithm and storage manager?

(4) Data Center & Mobile Cost: How do Vignette’s storage and
network bandwidth savings impact video storage system and
mobile viewing costs?

7.1 Storage and Bandwidth Savings

To evaluate the storage and bandwidth benefits of Vignette, we
applied Vignette Compression to the corpus of videos described in
§6. We transcoded our video library at iso-bitrate in salient regions
and decreased bitrate linearly with saliency to a minimum 10%
target bitrate in the lowest saliency tiles, as illustrated in Figure 2.
In these experiments, we examine how our transcoding performs
across a range of resolutions and workloads, as is expected in a
video storage system.

7.1.1 Impact of Tiling on Compression and Quality. We first ex-
amined the impact of tiling on compression benefits using a fixed
saliency map. We used an exhaustive tile configuration search and
evaluated all tile sizes to identify an optimal number of tiles for each
video. Our goal was to determine whether the number or shape of
video tiling affects resulting size. The smallest tile size we evaluated
were 64 pixels in breadth, but most videos performed best with
tiles having a breadth of 300–400 pixels. We observed that, given a
fixed saliency map, optimal tile configurations to maximize storage
savings and quality varied based on entropy and video content.
We found the optimal tile configuration varies from four tiles to

forty and per-video tile configuration is an important component
of tile-based compression. Some videos benefited from many small
tiles, while others performed best with fewer large tiles.

7.1.2 Overall Compression, Bandwidth, Quality. We next explored
peak compression, bandwidth, and quality savings by applying Vi-
gnette to our video corpus and measuring compression and quality.
We used the results of our exhaustive tile search to identify the
best compression-quality configurations for each video. Figure 6
shows aggregate storage savings, partitioned by dataset. Overall,
we find that Vignette Compression produces videos that are 1–15%
of the original size when maintaining the original bitrate in salient
regions. These compression savings include the fixed overhead
of perceptual metadata, which is <100 B for all videos. Datasets
with higher video resolutions (Blender, VR-360) demonstrated the
highest compression savings. The vbench dataset, which is algorith-
mically chosen to have a wide variance in resolution and entropy,
exhibits a commensurately large variance in storage reduction. Of
the videos with the lowest storage reduction, we find that each
tends to have low entropy, large text, or other 2D graphics that are
already efficiently encoded.

Figure 7a shows the average reduction in bitrate and resulting
quality, measured in PSNR and EWPSNR. Our results show that EW-
PSNR results are near-lossless for each benchmark dataset, while
the PSNR values—which do not take the human visual processing
system into account—nonetheless remain acceptable for viewing.
Figure 5 highlights a Vignette video frame from the Netflix dataset,
with an output PSNR of 36 dB and EWPSNR of 48 dB. Overall,
the results indicate that Vignette Compression provides acceptable
quality for its compression benefit.

7.1.3 Comparison with Saliency-based Encoder. Vignette differs
from traditional encoder-based solutions for incorporating saliency
information into the video compression pipeline. To evaluate the
performance of Vignette Compression relative to a custom saliency-
based encoder, we use the x264_saliency_mod fork of h.264 from
Lyudvichenko et al. [45]. Although the rest of our evaluation uses
hevc as the baseline codec, no existing saliency-based encoders
use hevc, so we instead compare with Vignette Compression using
h.264, the same encoder Lyudvichenko et al.modified. Because
Vignette can extensibly be used with any codec, it is straightforward
to switch Vignette Compression to use h.264 instead of hevc, as
we did for other experiments. For this experiment, we transcoded
benchmark videos to a target bitrate of 20% the original bitrate using
(1)h.264, (2) a saliency-based encoder, and (3) Vignette Compression
using h.264 as a base codec. As in §7.1.2, we measured achieved
bitrate reduction over the baseline videos and the resulting PSNR
and EWPSNR.

Figure 7b details the results. As expected, when tasked with re-
ducing video bitrate to 20%, the standard h.264 encoder generally
meets that bitrate reduction. Overall, the saliency-based encoder
and Vignette Compression perform favorably in bitrate reduction
compared to h.264: for vbench and Netflix, Vignette Compression
videos are smallest, but the custom encoder outperforms Vignette
Compression for the higher-resolution VR-360 and Blender bench-
marks. Examining quality, however, the custom encoder maintains
a higher PSNR and EWPSNR than Vignette Compression across

Perceptual Compression for Video Storage and Processing Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

(a) Vignette Compression with hevc.

Bitrate PSNR Eye-weighted
Benchmark Reduction (dB) PNSR (dB)

vbench 85.6 % 39 51
Netflix 98.6 34 45
VR-360 98.8 36 45
Blender 98.2 39 49

(b) Saliency-based compression with h.264 targeting 20% bitrate reduction.

Bitrate Reduction PSNR (dB) EWPSNR (dB)

Benchmark x264 [44] Vignette x264 [44] Vignette x264 [44] Vignette

vbench 23.3% 27.0% 7.6% 30 50 32 40 53 40
Netflix 32.0 12.4 5.1 28 34 32 40 47 43
VR-360 28.9 2.4 10.7 28 35 37 38 49 48
Blender 24.2 3.7 8.18 29 36 39 39 46 49

Figure 7: Bitrate reduction and quantitative quality metrics comparing (a) hevc and Vignette Compression using hevc, and

(b) h.264, a custom saliency-based encoder extending h.264, and Vignette Compression with h.264. For PSNR and EWPSNR, >

30 dB is acceptable for viewing, 50 dB+ is lossless.

all benchmarks. This quality gain can be attributed to the custom
encoder’s ability to finely tune quality on a per-macroblock scale.

We also observe saliency-based encoders also bear the additional
burden of full-size saliency information; even the test saliency
image provided by the saliency-based encoder, a single saliencymap
replicated for the length of the video, is 56KB. Vignette Storage’s
metadata, on the other hand, can be reduced to 100B bytestreams.

7.2 Quality of Service

To understand the impact of perceptual compression on common
video system workloads, we evaluated the quality of service (QoS)
delivered by Vignette for two applications: entertainment streaming
with a user study and evaluation of a video analytics application
that performs object recognition. These applications optimize for
different QoS metrics: perceptual quality for entertainment video;
throughput and accuracy for object recognition.

7.2.1 Perceptual Quality User Study. We we received IRB approval
to run a user study to quantify viewer perception of our saliency-
based compression. The study presented users with two versions of
the same video: one encoded with hevc at 20 Mbps (as our baseline),
the other with Vignette Compression. The Vignette Compression
videos were randomly chosen to be either 1 Mbps, 5 Mbps, 10 Mbps,
or 20 Mbps. For each video target bandwidth, we predicted saliency
and encoded the most-likely salient tiles of the video to the target
bitrate (1,5,10,20Mbps) and other tiles at lower bitrates, as in earlier
experiments. The study asked users their preference between the
matched pairs for 12 videos. The goal was to discover if viewers
prefer Vignette Compression to hevc, and, if so, if those preferences
are more or less pronounced at different bitrate levels for Vignette.

The 12 videos included three videos from each dataset, selected
to cover a range of entropy levels, and all videos’ original bitrate ex-
ceeded 20Mbps, except two from vbench. Each video was encoded
at a target bitrate (1Mbps, 5Mbps, 10Mbps, or 20Mbps), and the ques-
tionnaire randomly selected which bitrate to serve. We distributed
the questionnaire as a web survey and ensured videos played in
all browsers by losslessly re-encoding to h.264. Users viewed the
study videos in the web browser on their personal devices; devices
used ranged from phones on WiFi to laptops and wired desktops.
To eliminate concerns of buffering or network quality, the study
website pre-loaded all videos before allowing playback.

We recruited 35 naive participants aged 20–62 (51% women, 49%
men) from a college campus to participate in the study. Figure 8

Vignette @ 1 Mbps Vignette @ 5 Mbps Vignette @ 10 Mbps Vignette @ 20 Mbps

HEVC @

20
 M

bp
s

Can
't T

ell

Vign
ett

e

HEVC @

20
 M

bp
s

Can
't T

ell

Vign
ett

e

HEVC @

20
 M

bp
s

Can
't T

ell

Vign
ett

e

HEVC @

20
 M

bp
s

Can
't T

ell

Vign
ett

e

0%

25%

50%

75%

100%

Bitrate
Pe

rc
en

t P
re

fe
re

nc
e

Figure 8: Results of perceived quality preference user study,

averaged across participants and videos by bitrate.

Table 3: Vignette Speedup and Accuracy Compared to hevc

Baseline on YOLO Object Recognition.

Decode Total Speedup Average
Speedup (Decode + YOLO) Accuracy

34.6% ± 14.3% 2.6% ± 2.2% 84% ± 14%

shows the results averaged across subjects and videos. When Vi-
gnette videos are encoded at 1 Mbps in the most salient regions, 72%
users preferred the hevc baseline. However, for Vignette videos en-
coded at 5, 10, and 20 Mbps, users either could not tell the difference
between hevc and Vignette, or preferred Vignette videos 60%, 79%,
and 81% of the time, respectively. This suggests that video systems
can deliver Vignette-encoded videos at 50-75% lower bitrate with
little perceived impact.

7.2.2 Object classification. Video storage and processing systems
often perform analytics and machine learning tasks on their video
libraries at scale [53, 56, 62]. To evaluate any performance degrada-
tion in latency or quality from using Vignette Compression, we pro-
file Vignette while running YOLO [54], a popular fast object recog-
nition algorithm used in recent video analytics systems [27, 31–33].
We compare against baseline hevc-encoded videos to evaluate if
Vignette incurs any additional cost in a video processing setting,
and run YOLO inference on the GPU. Table 3 shows that using
Vignette-compressed videos provides some speedup when decod-
ing videos for object recognition, but this benefit is overshadowed
by the fixed cost of running YOLO.

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Mazumdar, et al.

Examining accuracy, we find that Vignette videos maintain 84%
accuracy on average, compared to the baseline hevc videos. We
find that accuracy on the YOLO task is lowest for the videos in
the VR360 suite, and tends to correspond to the areas where the
video is distorted from the equirectangular projection. Overall, we
find saliency-compressed videos can provide slight benefits for
video analytics latency, especially if video decoding is the system
bottleneck. Future work, however should investigate how to opti-
mize saliency-based compression for video analytics. For instance,
Vignette Compression could provide functionality to support mul-
tiple perceptual prediction algorithms, including models tuned for
analytics.

7.3 Compute Overhead

Vignette Compression bears the additional processing overhead of
executing a neural network to generate or update saliency maps. Vi-
gnette Storage can switch between the exhaustive or heuristic-based
tile configuration search to uncover optimal tile configurations for
a video. We benchmarked the latency of the combined saliency
and transcoding pipeline in two modes: exhaustive, which gener-
ates saliency maps per frame and exhaustively evaluates tiling, and
heuristic, which uses the heuristic search algorithm to select a tile
configuration within 0.25 dB of the best-PSNR choice (§5.4).

Table 4 shows generating saliency maps with MLNet dominates
computation time. This step, however, needs only to be performed
once per video, and is off the critical path for video streaming
workloads. Moreover, improving the performance of the saliency
prediction (MLNet) would significantly reduce these overheads. The
neural network used runs as unoptimized Theano code that could
be improved by using an optimizing machine learning framework.

7.4 Analytical Model of Data Center and

Mobile Costs

We use our evaluation results to model Vignette’s system costs at
scale for data center storage and end-user mobile power consump-
tion. While these results are a first-order analysis, they suggest the
potential benefit of deploying Vignette in the cloud.

7.4.1 Data center compute, storage, and network costs. Given the
high compute cost of Vignette, we evaluate the break-even point for
systems that store and deliver video content. We used AmazonWeb
Services (AWS) prices from July 2018 in the Northern California
region to characterize costs.

We use a c5.xlarge instance’s costs for compute, S3 for storage,
and vary the number of videos transferred to the Internet as a
proxy for video views. We assume a video library of 1 million
videos that are 10 MB each, encoded at 100 different resolution-
bitrate settings (as in [28, 35]) to produce ∼500 TB of video data.
We measured baseline compute cost to be a two-pass encoding for
each video at $0.212 / sec and Vignette’s transcode computation
to be 5× a baseline transcode, averaged from transcode costs for
videos across the datasets. Larger companies likely use Reserved
or Spot Instance offerings, which provide better value for years-
long reservation slots or non-immediate jobs; they are 36% and 73%
cheaper, respectively. For storage, we measured costs to be $0.023 /
GB on S3 and estimate Vignette-compressed videos would be 10%
of the original videos (§7.1). Transferring data out from S3 costs

Table 4: Mean processing time per video, evaluated over all

videos in our datasets.

Exhaustive Heuristic

Task Time (s) % Time (s) %

Generate saliency map 1633 49% 1633 95%
Compute tile configuration 1696 50 59 4
Saliency-based transcode 21 1 21 1

Total 3350 1713

$0.05 / GB; this cost is where Vignette achieves the majority of its
savings.

Figure 9 shows how different compute pricing models produce
lower savings at small numbers of video library views, but that
Vignette becomes cost-effective at large video viewing rates. For all
pricing tiers, a system would need to service ∼2 billion views across
a million-video library before Vignette’s compute overhead would
be amortized across transmission and storage savings. This number
is plausible for large video services; Facebook reported 8 billion
daily views in 2016 [48]. Even with Vignette’s substantial overhead,
streaming services need just 2,000 views per video to break even:
this could be 2 billion views across a million video library or 2,000
views of a single video.

7.4.2 Mobile Power Consumption. We explicitly designed Vignette
to work with the hevc standard so off-the-shelf software and hard-
ware codecs could decompress Vignette videos. Vignette Compres-
sion’s tiling strategy, however, makes video bitstream density highly
non-uniform across the visual plane. This results in inefficiency for
hardware architectures that decode variably-sized tiles in parallel.
On the other hand, even such designs could achieve a higher overall
power efficiency because of the reduced file sizes to decode and
display. To investigate whether Vignette videos reduce or increase
mobile power consumption, we profiled power consumption on a
Google Pixel 2 phone during video playback of Vignette videos and
standard hevc-encoded videos.

We measured battery capacity on a Google Pixel 2 while play-
ing our video library in a loop. The phone ran Android version
8.1.0 and kernel version 4.4.88-g3acf2d53921d, and MX Player 1.9.24
with ARMv7 NEON instructions enabled. Whenever possible, MX
Player used hardware acceleration to render videos.2 We disabled
nonessential display and button backlights, as well as any config-
urable sensors or location monitors, to minimize extraneous power
consumption. We logged battery statistics each minute using 3C
Battery Monitor Widget v3.21.8. We conducted three trials, playing
the 93-file video library in a loop until battery charge dissipated
from 100% to 30%, for our hevc baseline and Vignette videos.

Figure 10 shows our results. We found that Vignette video en-
abled 1.6× longer video playback time with the same power con-
sumption. While hardware decoder implementations are typically
proprietary, these results indicate that perceptual compression ben-
efits mobile viewers, as well as cloud infrastructure. For video decod-
ing ASICs where the hardware design is known [46, 64], Vignette’s

2MX Player only supported decoding stereoscopic videos with the software decoder.

Perceptual Compression for Video Storage and Processing Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

105

105.5

106

106.5

107

104 106 108 1010

Total Views Across Video Library

A
W

S
In

st
an

ce
 C

os
t (

$)

HEVC-OnDemand

HEVC-Reserved

HEVC-Spot

Vignette

Figure 9: Estimated AWS costs for deploying Vignette ver-

sus traditional video transcoding. Vignette’s additional com-

pute cost is amortized after ∼2 billion video views over a 1-

million video library.

heuristic search algorithm could include power consumption of
tiles as an optimization target to produce perceptually compressed
videos for a “power-save” mode. We leave further optimization
of Vignette on mobile devices, including network download and
decoder optimization, to future work.

8 LIMITATIONS AND FUTUREWORK

This section considers limitations in our approach and evaluation.

8.1 Vignette Design Limitations

8.1.1 High compute overhead. Vignette’s high one-time compres-
sion cost is its biggest drawback, but we consider our algorithm
to be a reference implementation which will be improved upon in
future work. The compression performance is hindered by the use
of a highly accurate but slow neural network for saliency predic-
tion, which does not yet use a GPU or any modern deep learning
optimizations. Further, this expensive compression is run only once
and is easily amortized across many views (§7.4). Future work could
characterize the compute overhead of other saliency prediction tech-
niques [36] or tailor existing deep prediction networks to existing
cloud infrastructure [46] for improved performance.

8.1.2 Dependency on tiles. We argue Vignette’s use of tiling fea-
tures in video codecs is more flexible and forward-compatible than
rewriting a codec for each new type of perceptual information.
If, however, conventional codecs choose to integrate saliency or
other perceptual information, the impact of a cloud storage system
designed to support tile-based perceptual encoding will be smaller.

8.1.3 Integration with networking and other video system optimiza-
tions. We could further improve Vignette by building on other op-
timizations that work with off-the-shelf video standards. Notably,
Vignette does not yet support video streaming using adaptive bitrate
(ABR) algorithms. Future work could pair Vignette’s saliency-based
tiling with Fouladi et al.’s codesigned video transcode and network
transport protocol could achieve better streaming quality [19, 20],
or with VideoCoreCluster [41]’s energy-efficient cloud transcoding
using low-cost transcoding ASICs. Vignette’s heuristic search al-
gorithm could include power and performance information from
open-source video transcoding ASICs [46, 64] to target more power-
efficient tiling configurations. At the physical storage layer, Jevdjic

40%

60%

80%

100%

00:00 01:00 02:00 03:00 04:00 05:00 06:00

Time

%
 B

at
te

ry
 R

em
ai

ni
ng

HEVC

Vignette

Figure 10: Time to dissipate a Google Pixel 2 phone battery

from 100% to 30% when viewing hevc and Vignette videos

continuously. Vignette videos provide 1.67× longer video

playback on mobile phones.

et al.’s approximate video storage framework, which maps video
streams to different layers of error correction, could be coupled with
Vignette’s saliency mapping for more aggressive approximation of
non-salient video regions [30]. Integrating Vignette with these sys-
tems optimizations could further improve power efficiency during
playback, transcoding latency, or archival video storage durability.

8.1.4 Using Vignette in other storage systems. While we only evalu-
ated Vignette using LightDB, but we crafted the policies, metadata
extensions, and compression scheme to enable compatibility with
pre-existing video storage or transcoding systems. For instance, an
Amazon MediaConvert instance with a storage layer in Amazon
EBS and Glacier can easily use the policies and metadata in §5 to
implement Vignette, and Vignette can easily be used with other
codecs, like the upcoming av1.

8.1.5 Integration with other perceptual techniques. This paper de-
scribed using predicted saliency to perform perceptual video com-
pression. As mentioned in §2, other kinds of perceptual indicators
could be leveraged to improve video compression. As new technolo-
gies to capture other perceptual cues become available, Vignette’s
techniques can be extended to encode multiple cues.

8.2 Evaluation Limitations

8.2.1 Comparison with ground truth. To compute EWPSNR, we use
saliency maps generated by MLNet as ground truth. This evaluates
Vignette quality compared to the saliency map, but not quality
for real users. Evaluating on more precise ground truth, such as
eye tracker positions from users, however, requires resolving some
open questions. For instance, how should a perceptual compression-
based video storage system manage saliency for multiple users?
How does Vignette’s overhead and compression benefit change
when tuning compression for multiple users or kinds of devices
(mobile, desktop, television)?

8.2.2 Saliency for screencasts and 2D graphics. We eliminated one
outlier video, a screencast of a slideshow, because the saliency
model performed poorly and provided little compression benefit.
While our work targets reductions of storage size and network
bandwidth for the large corpora of videos stored for social media,

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Mazumdar, et al.

entertainment, and video processing services, optimizing transmis-
sion of screencasts and other 2D graphics videos requires includ-
ing information from different saliency models. Incorporating re-
cent saliency models specifically designed for 2D visualizations [8]
would likely resolve the issue.

9 RELATEDWORK

9.1 Video Streaming and Storage Systems

The rise of video applications has driven renewed interest in pro-
cessing and storage systems for video content, with recent work
specializing for subdomains like social media, entertainment, and
video streaming. Social media services distribute user-uploaded
content from many types of video capture devices to many types
of viewing devices, typically serving a small number of popular or
livestreamed videos at high quality and low latency, as well as a
long tail of less popular videos [16, 59]. These workloads motivated
custom media storage infrastructure and fault-tolerant frameworks
for video uploads at scale [3, 4, 28, 43, 50]. Entertainment video
platforms like Netflix have smaller amounts of video data than so-
cial media services, but incur significantly more network traffic to
distribute videos broadly. These services maintain user experience
by transcoding videos for a range of heterogeneous devices and
bitrate requirements, tailoring encode settings by title, streaming
device, and video scene [1, 35, 47, 51].

Aside from entertainment, recent work in systems proposes
tailoring machine learning pipelines for video analytics applica-
tions [27, 31–33, 63]. Specifically, they combine multiple classifica-
tion algorithms to intelligently distribute computing effort to video
frames that are determined to have interesting content, similar to
semantic-based processing. BlazeIt [32], for instance, couples of sim-
ple, efficient classifiers with complex, precise ones using “scrubbing
queries”. Focus [27] uses the technique to build up an “approximate
index” of relevant videos. For these domains, Vignette is a com-
plementary design integrating perceptual information with video
storage and can likely compound performance improvements.

9.2 Saliency-based Compression

Vignette builds on a large body of work in saliency-based com-
pression. Early work improved the accuracy of saliency predic-
tion [36, 40], the speed of computing saliency [22, 23, 65], or coding
efficiency [22, 24, 45, 57, 65]. These existing solutions require cus-
tom versions of outdated codecs or solving costly optimization
problems during each transcoding run. Vignette fundamentally
differs from other contributions in perceptual compression by intro-
ducing a system design that can flexibly use any saliency prediction
algorithm or video codec, rather than focusing only on accuracy,
speed, or efficiency of saliency prediction. The limitations of prior
work specifically influenced Vignette’s design as a storage manager
compatible with existing codecs, uses low-overhead metadata, and
exposes a simple API for integration.

More recently, multimedia and networking research optimized
streaming bandwidth requirements for 360° and VR video by de-
creasing quality outside the VR field-of-view [15, 26, 42, 55]; while
similar in spirit to perceptual compression, this only compresses
non-visible regions of a video. Semantic-based compression, an-
other variant of perceptual compression, optimizes compression

for regions with objects of interest. Recent work [37, 38] targets
streaming applications, demonstrating the potential for energy effi-
ciency and reduced network cost for end-devices, but not storage.
Examining concerns for future VR pipelines, Sitzmann et al. [57]
observe the impact of leveraging saliency for VR video storage
and identified key perceptual requirements, but do not address the
production or distribution of saliency-compressed videos.

10 CONCLUSION

Video data continues to grow with increased video capture and
consumption trends, but leveraging perceptual cues can help man-
age this data. This paper proposes integrating perceptual compres-
sion techniques with cloud video storage infrastructure to improve
storage capacity and video bitrates while maintaining perceptual
quality. Vignette combines automatic generation of perceptual in-
formation with a video transcoding pipeline to enable large-scale
perceptual compression with minimal data overhead. Our offline
compression techniques deliver storage savings of up to 95%, and
user trials confirm little perceptual quality loss for Vignette videos
50-75% smaller in size.

Vignette’s design complements the contributions of existing
large-scale cloud video storage and processing systems. Video sys-
tems can use Vignette to further improve storage capacity or in
anticipation of video workloads using perceptual cues. As VR video
consumption and new perceptual markers — such as eye trackers
in VR headsets — grow in popularity, Vignette’s techniques will
be critical in integrating perceptual compression at large scale for
higher quality, lower bitrate video storage.

ACKNOWLEDGMENTS

We thank members of the UW Architecture and Systems groups,
and the anonymous reviewers for their feedback on earlier versions
of this work; our shepherd Mahadev Satyanarayan for his guidance
during the revision process; and the participants in our user study.
This work is supported by the NSF through grants CCF-1703051, IIS-
1546083, CCF-1518703, and CNS-1563788; DARPA award FA8750-
16-2-0032; DOE award DE-SC0016260; a Google Faculty Research
Award; an award from the University of Washington Reality Lab;
gifts from the Intel Science and Technology Center for Big Data,
Intel Corporation, Adobe, Amazon, Facebook, Huawei, and Google;
and by CRISP, one of six centers in JUMP, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA.

REFERENCES

[1] Anne Aaron, Zhi Li, Megha Manohara, Jan De Cock, and David Ronca. 2015.
Per-Title Encode Optimization. https://medium.com/netflix-techblog/per-title-
encode-optimization-7e99442b62a2 Accessed: 2019-10-01.

[2] Anne Aaron and David Ronca. 2015. High Quality Video Encoding at Scale. http:
//techblog.netflix.com/2015/12/high-quality-video-encoding-at-scale.html Ac-
cessed: 2019-10-01.

[3] Lixiang Ao, Liz Izhikevich, GeoffreyMVoelker, and George Porter. 2018. Sprocket:
A serverless video processing framework. In Proceedings of the Ninth ACM Sym-
posium on Cloud Computing (SoCC ’18). ACM.

[4] Doug Beaver, Sanjeev Kumar, Harry Li, Jason Sobel, and Peter Vajgel. 2010.
Finding a needle in Haystack: Facebook’s photo storage. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI). USENIX Association.
https://www.usenix.org/legacy/event/osdi10/

[5] Fabrice Bellard. [n.d.]. FFmpeg. https://ffmpeg.org
[6] Andreas Bulling, Daniel Roggen, and Gerhard Tröster. 2009. Wearable EOG

Goggles: Seamless Sensing and Context-awareness in Everyday Environments.

https://medium.com/netflix-techblog/per-title-encode-optimization-7e99442b62a2
https://medium.com/netflix-techblog/per-title-encode-optimization-7e99442b62a2
http://techblog.netflix.com/2015/12/high-quality-video-encoding-at-scale.html
http://techblog.netflix.com/2015/12/high-quality-video-encoding-at-scale.html
https://www.usenix.org/legacy/event/osdi10/
https://ffmpeg.org

Perceptual Compression for Video Storage and Processing Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

Journal of Ambient Intelligence and Smart Environments 1, 2 (April 2009). http:
//dl.acm.org/citation.cfm?id=2350315.2350320

[7] Zoya Bylinskii, Tilke Judd, Ali Borji, Laurent Itti, Frédo Durand, Aude Oliva, and
Antonio Torralba. [n.d.]. MIT Saliency Benchmark.

[8] Zoya Bylinskii, Nam Wook Kim, Peter O’Donovan, Sami Alsheikh, Spandan
Madan, Hanspeter Pfister, Fredo Durand, Bryan Russell, and Aaron Hertzmann.
2017. Learning Visual Importance for Graphic Designs and Data Visualizations.
In Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology (UIST ’17). ACM. https://doi.org/10.1145/3126594.3126653

[9] Zoya Bylinskii, Adrià Recasens, Ali Borji, Aude Oliva, Antonio Torralba, and
Frédo Durand. 2016. Where Should Saliency Models Look Next?. In European
Conference on Computer Vision (ECCV), Bastian Leibe, Jiri Matas, Nicu Sebe, and
Max Welling (Eds.). Springer International Publishing.

[10] François Chollet et al. 2015. Keras. https://keras.io.
[11] Cisco. 2008. Cisco Visual Networking Index: Forecast and Methodology, 2008–

2013. https://www.cisco.com/c/dam/global/pt_br/assets/docs/whitepaper_VNI_
06_09.pdf Accessed: 2019-10-01.

[12] Cisco. 2016. Cisco Visual Networking Index: Forecast and Methodology, 2016–
2021. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/complete-white-paper-c11-481360.pdf Accessed:
2019-10-01.

[13] Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, and Rita Cucchiara. 2016. A
Deep Multi-Level Network for Saliency Prediction. In International Conference
on Pattern Recognition (ICPR).

[14] Jan De Cock, Aditya Mavlankar, Anush Moorthy, and Anne Aaron. 2016. A
large-scale video codec comparison of x264, x265 and libvpx for practical VOD
applications. In Applications of Digital Image Processing XXXIX, Vol. 9971. Inter-
national Society for Optics and Photonics.

[15] Ching-Ling Fan, Jean Lee, Wen-Chih Lo, Chun-Ying Huang, Kuan-Ta Chen, and
Cheng-Hsin Hsu. 2017. Fixation Prediction for 360&Deg; Video Streaming in
Head-Mounted Virtual Reality. In Proceedings of the 27th Workshop on Network
and Operating Systems Support for Digital Audio and Video (NOSSDAV’17). ACM.
https://doi.org/10.1145/3083165.3083180

[16] fblive 2018. Facebook Live | Live Video Streaming. https://live.fb.com/
[17] Robert E. Fontana and Gary M. Decad. 2018. Moore’s law realities for recording

systems and memory storage components: HDD, tape, NAND, and optical. AIP
Advances 8, 5 (2018). https://doi.org/10.1063/1.5007621

[18] Alliance for Open Media (AOM). 2018. AV1 Software Repository. https://
aomedia.googlesource.com/aom

[19] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S. Wahby, and
Keith Winstein. 2018. Salsify: Low-Latency Network Video through Tighter
Integration between a Video Codec and a Transport Protocol. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 18). USENIX
Association. https://www.usenix.org/conference/nsdi18/presentation/fouladi

[20] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubra-
maniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video Processing
Using Thousands of Tiny Threads. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). USENIX Association. https:
//www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi

[21] Blender Foundation. 2002. Blender Open Projects. https://www.blender.org/about/
projects/ Accessed: 2019-10-01.

[22] C. Guo and L. Zhang. 2010. A Novel Multiresolution Spatiotemporal Saliency
Detection Model and Its Applications in Image and Video Compression. IEEE
Transactions on Image Processing 19, 1 (Jan 2010). https://doi.org/10.1109/TIP.
2009.2030969

[23] Rupesh Gupta, Meera Thapar Khanna, and Santanu Chaudhury. 2013. Visual
saliency guided video compression algorithm. Signal Processing: Image Commu-
nication 28, 9 (2013). https://doi.org/10.1016/j.image.2013.07.003

[24] H. Hadizadeh and I. V. Bajić. 2014. Saliency-Aware Video Compression. IEEE
Transactions on Image Processing 23, 1 (Jan 2014). https://doi.org/10.1109/TIP.
2013.2282897

[25] Brandon Haynes, Amrita Mazumdar, Armin Alaghi, Magdalena Balazinska, Luis
Ceze, and Alvin Cheung. 2018. LightDB:A DBMS for Virtual Reality. Proceedings
of the VLDB Endowment 11, 10 (2018).

[26] Brandon Haynes, Artem Minyaylov, Magdalena Balazinska, Luis Ceze, and Alvin
Cheung. 2017. VisualCloud Demonstration: A DBMS for Virtual Reality. In
Proceedings of the 2017 ACM International Conference on Management of Data
(SIGMOD ’17). ACM. https://doi.org/10.1145/3035918.3058734

[27] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodík, Shivaram Venkataraman,
Paramvir Bahl, Matthai Philipose, Phillip B. Gibbons, and Onur Mutlu. 2018.
Focus: Querying Large Video Datasets with Low Latency and Low Cost. In OSDI.
https://www.usenix.org/conference/osdi18/presentation/hsieh

[28] Qi Huang, Petchean Ang, Peter Knowles, Tomasz Nykiel, Iaroslav Tverdokhlib,
Amit Yajurvedi, Paul Dapolito, IV, Xifan Yan, Maxim Bykov, Chuen Liang, Mohit
Talwar, Abhishek Mathur, Sachin Kulkarni, Matthew Burke, and Wyatt Lloyd.
2017. SVE: Distributed Video Processing at Facebook Scale. In Proceedings of

the 26th Symposium on Operating Systems Principles (SOSP ’17). ACM. https:
//doi.org/10.1145/3132747.3132775

[29] X. Huang, C. Shen, X. Boix, and Q. Zhao. 2015. SALICON: Reducing the Semantic
Gap in Saliency Prediction by Adapting Deep Neural Networks. In 2015 IEEE
International Conference on Computer Vision (ICCV). https://doi.org/10.1109/
ICCV.2015.38

[30] Djordje Jevdjic, Karin Strauss, Luis Ceze, and Henrique S. Malvar. 2017. Ap-
proximate Storage of Compressed and Encrypted Videos. In Proceedings of the
Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’17). ACM. https://doi.org/10.1145/
3037697.3037718

[31] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodík, Siddhartha Sen, and Ion
Stoica. 2018. Chameleon: scalable adaptation of video analytics. In SIGCOMM.
https://doi.org/10.1145/3230543.3230574

[32] Daniel Kang, Peter Bailis, and Matei Zaharia. 2018. BlazeIt: Fast Exploratory
Video Queries using Neural Networks. (2018). arXiv:1805.01046 http://arxiv.org/
abs/1805.01046

[33] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.
NoScope: Optimizing Deep CNN-Based Queries over Video Streams at Scale.
PVLDB 10, 11 (2017).

[34] V. Kantorov and I. Laptev. 2014. Efficient feature extraction, encoding and classi-
fication for action recognition. In 2014 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[35] Ioannis Katsavounidis. 2018. Dynamic optimizer – a perceptual video encoding op-
timization framework. https://medium.com/netflix-techblog/dynamic-optimizer-
a-perceptual-video-encoding-optimization-framework-e19f1e3a277f Accessed:
2019-10-01.

[36] J. S. Lee and T. Ebrahimi. 2012. Perceptual Video Compression: A Survey. IEEE
Journal of Selected Topics in Signal Processing 6, 6 (Oct 2012). https://doi.org/10.
1109/JSTSP.2012.2215006

[37] Yue Leng, Chi-Chun Chen, Qiuyue Sun, Jian Huang, and Yuhao Zhu. 2018.
Semantic-Aware Virtual Reality Video Streaming. In Proceedings of the 9th Asia-
Pacific Workshop on Systems (APSys ’18). ACM, Article 21. https://doi.org/10.
1145/3265723.3265738

[38] Yue Leng, Chi-Chun Chen, Qiuyue Sun, Jian Huang, and Yuhao Zhu. 2019. Energy-
Efficient Video Processing for Virtual Reality. (2019).

[39] Zhi Li, Anne Aaron, Ioannis Katsavounidis, Anush Moorthy, and Megha
Manohara. 2016. Toward A Practical Perceptual Video Quality Metric. http://
techblog.netflix.com/2016/06/toward-practical-perceptual-video.html Accessed:
2019-10-01.

[40] Zhicheng Li, Shiyin Qin, and Laurent Itti. 2011. Visual attention guided bit
allocation in video compression. Image and Vision Computing 29, 1 (2011).

[41] Peng Liu, Jongwon Yoon, Lance Johnson, and Suman Banerjee. 2016. Greening
the Video Transcoding Service with Low-Cost Hardware Transcoders. In 2016
USENIX Annual Technical Conference (USENIX ATC 16). USENIX Association.
https://www.usenix.org/conference/atc16/technical-sessions/presentation/liu

[42] Wen-Chih Lo, Ching-Ling Fan, Jean Lee, Chun-Ying Huang, Kuan-Ta Chen, and
Cheng-Hsin Hsu. 2017. 360&Deg; Video Viewing Dataset in Head-Mounted
Virtual Reality. In Proceedings of the 8th ACM on Multimedia Systems Conference
(MMSys’17). ACM. https://doi.org/10.1145/3083187.3083219

[43] Andrea Lottarini, Alex Ramirez, Joel Coburn, Martha A. Kim, Parthasarathy Ran-
ganathan, Daniel Stodolsky, and Mark Wachsler. 2018. Vbench: Benchmarking
Video Transcoding in the Cloud. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’18). ACM. https://doi.org/10.1145/3173162.3173207

[44] Yao Lu, Aakanksha Chowdhery, and Srikanth Kandula. 2016. Optasia: A Relational
Platform for Efficient Large-Scale Video Analytics. In Proceedings of the Seventh
ACM Symposium on Cloud Computing (SoCC ’16). ACM. https://doi.org/10.1145/
2987550.2987564

[45] V. Lyudvichenko, M. Erofeev, Y. Gitman, and D. Vatolin. 2017. A semiautomatic
saliency model and its application to video compression. In 2017 13th IEEE In-
ternational Conference on Intelligent Computer Communication and Processing
(ICCP). https://doi.org/10.1109/ICCP.2017.8117038

[46] Ikuo Magaki, Moein Khazraee, Luis Vega Gutierrez, and Michael Bedford Tay-
lor. 2016. ASIC Clouds: Specializing the Datacenter. In Proceedings of the
43rd International Symposium on Computer Architecture (ISCA ’16). IEEE Press.
https://doi.org/10.1109/ISCA.2016.25

[47] Megha Manohara, Anush Moorthy, Jan De Cock, Ioannis Katsavouni-
dis, and Anne Aaron. 2018. Optimized shot-based encodes: Now Stream-
ing! https://medium.com/netflix-techblog/optimized-shot-based-encodes-now-
streaming-4b9464204830 Accessed: 2019-10-01.

[48] Mediakix. 2016. The Facebook Video Statistics Everyone Needs to Know. http:
//mediakix.com/2016/08/facebook-video-statistics-everyone-needs-know

[49] K. Misra, A. Segall, M. Horowitz, S. Xu, A. Fuldseth, and M. Zhou. 2013. An
Overview of Tiles in HEVC. IEEE Journal of Selected Topics in Signal Processing 7,
6 (Dec 2013). https://doi.org/10.1109/JSTSP.2013.2271451

[50] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, Ernest Lin,
Weiwen Liu, Satadru Pan, Shiva Shankar, Viswanath Sivakumar, Linpeng Tang,

http://dl.acm.org/citation.cfm?id=2350315.2350320
http://dl.acm.org/citation.cfm?id=2350315.2350320
https://doi.org/10.1145/3126594.3126653
https://keras.io
https://www.cisco.com/c/dam/global/pt_br/assets/docs/whitepaper_VNI_06_09.pdf
https://www.cisco.com/c/dam/global/pt_br/assets/docs/whitepaper_VNI_06_09.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
https://doi.org/10.1145/3083165.3083180
https://live.fb.com/
https://doi.org/10.1063/1.5007621
https://aomedia.googlesource.com/aom
https://aomedia.googlesource.com/aom
https://www.usenix.org/conference/nsdi18/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.blender.org/about/projects/
https://www.blender.org/about/projects/
https://doi.org/10.1109/TIP.2009.2030969
https://doi.org/10.1109/TIP.2009.2030969
https://doi.org/10.1016/j.image.2013.07.003
https://doi.org/10.1109/TIP.2013.2282897
https://doi.org/10.1109/TIP.2013.2282897
https://doi.org/10.1145/3035918.3058734
https://www.usenix.org/conference/osdi18/presentation/hsieh
https://doi.org/10.1145/3132747.3132775
https://doi.org/10.1145/3132747.3132775
https://doi.org/10.1109/ICCV.2015.38
https://doi.org/10.1109/ICCV.2015.38
https://doi.org/10.1145/3037697.3037718
https://doi.org/10.1145/3037697.3037718
https://doi.org/10.1145/3230543.3230574
http://arxiv.org/abs/1805.01046
http://arxiv.org/abs/1805.01046
http://arxiv.org/abs/1805.01046
https://medium.com/netflix-techblog/dynamic-optimizer-a-perceptual-video-encoding-optimization-framework-e19f1e3a277f
https://medium.com/netflix-techblog/dynamic-optimizer-a-perceptual-video-encoding-optimization-framework-e19f1e3a277f
https://doi.org/10.1109/JSTSP.2012.2215006
https://doi.org/10.1109/JSTSP.2012.2215006
https://doi.org/10.1145/3265723.3265738
https://doi.org/10.1145/3265723.3265738
http://techblog.netflix.com/2016/06/toward-practical-perceptual-video.html
http://techblog.netflix.com/2016/06/toward-practical-perceptual-video.html
https://www.usenix.org/conference/atc16/technical-sessions/presentation/liu
https://doi.org/10.1145/3083187.3083219
https://doi.org/10.1145/3173162.3173207
https://doi.org/10.1145/2987550.2987564
https://doi.org/10.1145/2987550.2987564
https://doi.org/10.1109/ICCP.2017.8117038
https://doi.org/10.1109/ISCA.2016.25
https://medium.com/netflix-techblog/optimized-shot-based-encodes-now-streaming-4b9464204830
https://medium.com/netflix-techblog/optimized-shot-based-encodes-now-streaming-4b9464204830
http://mediakix.com/2016/08/facebook-video-statistics-everyone-needs-know
http://mediakix.com/2016/08/facebook-video-statistics-everyone-needs-know
https://doi.org/10.1109/JSTSP.2013.2271451

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Mazumdar, et al.

and Sanjeev Kumar. 2014. f4: Facebook’s Warm BLOB Storage System. In 11th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
14). USENIX Association. https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/muralidhar

[51] Andrey Norkin, Jan De Cock, Aditya Mavlankar, and Anne Aaron. 2016. More Effi-
cient Mobile Encodes for Netflix Downloads. https://medium.com/netflix-techblog/
more-efficient-mobile-encodes-for-netflix-downloads-625d7b082909 Accessed:
2019-10-01.

[52] nvenc [n.d.]. Nvidia Video codec. https://developer.nvidia.com/nvidia-video-
codec-sdk

[53] Alex Poms, Will Crichton, Pat Hanrahan, and Kayvon Fatahalian. 2018. Scanner:
Efficient Video Analysis at Scale. ACM Trans. Graph. 36, 4 (2018).

[54] Joseph Redmon and Ali Farhadi. 2017. YOLO9000: Better, Faster, Stronger. In
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[55] Jihoon Ryoo, Kiwon Yun, Dimitris Samaras, Samir R. Das, and Gregory Zelinsky.
2016. Design and Evaluation of a Foveated Video Streaming Service for Commod-
ity Client Devices. In Proceedings of the 7th International Conference onMultimedia
Systems (MMSys ’16). ACM, Article 6. https://doi.org/10.1145/2910017.2910592

[56] Haichen Shen, Seungyeop Han, Matthai Philipose, and Arvind Krishnamurthy.
2017. Fast Video Classification via Adaptive Cascading of Deep Models. In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[57] V. Sitzmann, A. Serrano, A. Pavel, M. Agrawala, D. Gutierrez, B. Masia, and G.
Wetzstein. 2018. Saliency in VR: How Do People Explore Virtual Environments?
IEEE Transactions on Visualization and Computer Graphics 24, 4 (April 2018).
https://doi.org/10.1109/TVCG.2018.2793599

[58] Gary J. Sullivan, Jens-Rainer Ohm, Woojin Han, and Thomas Wiegand. 2012.
Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Transac-
tions on Circuits and Systems for Video Technology 22, 12 (2012).

[59] Linpeng Tang, Qi Huang, Amit Puntambekar, Ymir Vigfusson, Wyatt Lloyd,
and Kai Li. 2017. Popularity Prediction of Facebook Videos for Higher Qual-
ity Streaming. In 2017 USENIX Annual Technical Conference (USENIX ATC
17). USENIX Association. https://www.usenix.org/conference/atc17/technical-
sessions/presentation/tang

[60] Theano Development Team. 2016. Theano: A Python framework for fast
computation of mathematical expressions. (2016). arXiv:1605.02688 http:
//arxiv.org/abs/1605.02688

[61] Eric Whitmire, Laura Trutoiu, Robert Cavin, David Perek, Brian Scally, James
Phillips, and Shwetak Patel. 2016. EyeContact: Scleral Coil Eye Tracking for Vir-
tual Reality. In Proceedings of the 2016 ACM International Symposium on Wearable
Computers (ISWC ’16). ACM. https://doi.org/10.1145/2971763.2971771

[62] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodík, Matthai Philipose,
Paramvir Bahl, and Michael J. Freedman. 2017. Live Video Analytics at Scale with
Approximation and Delay-Tolerance. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18).

[63] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodík, Matthai Philipose,
Paramvir Bahl, and Michael J. Freedman. 2017. Live Video Analytics at Scale
with Approximation and Delay-Tolerance. In NSDI. https://www.usenix.org/
conference/nsdi17/technical-sessions/presentation/zhang

[64] Haibo Zhang, Prasanna Venkatesh Rengasamy, Shulin Zhao, Nachiappan Chi-
dambaram Nachiappan, Anand Sivasubramaniam, Mahmut T. Kandemir, Ravi
Iyer, and Chita R. Das. 2017. Race-to-sleep + Content Caching + Display Caching:
A Recipe for Energy-efficient Video Streaming on Handhelds. In Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-50
’17). ACM. https://doi.org/10.1145/3123939.3123948

[65] Fabio Zund, Yael Pritch, Alexander Sorkine-Hornung, Stefan Mangold, and
Thomas Gross. 2013. Content-aware compression using saliency-driven image
retargeting. In Image Processing (ICIP), 2013 20th IEEE International Conference
on. IEEE.

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/muralidhar
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/muralidhar
https://medium.com/netflix-techblog/more-efficient-mobile-encodes-for-netflix-downloads-625d7b082909
https://medium.com/netflix-techblog/more-efficient-mobile-encodes-for-netflix-downloads-625d7b082909
https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/nvidia-video-codec-sdk
https://doi.org/10.1145/2910017.2910592
https://doi.org/10.1109/TVCG.2018.2793599
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tang
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tang
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
https://doi.org/10.1145/2971763.2971771
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang
https://doi.org/10.1145/3123939.3123948

	Abstract
	1 Introduction
	2 Background: Perceptual Compression Using Saliency Maps
	2.1 Saliency Maps and Detection Algorithms
	2.2 Systems Support for Perceptual Video Compression
	2.3 Tiled Video Encoding

	3 Vignette System Overview
	3.1 Vignette Compression
	3.2 Vignette Storage

	4 Vignette Perceptual Compression Design
	4.1 Automatically Generating Saliency Maps
	4.2 Leveraging Saliency With Tiled Encodings
	4.3 Mapping Saliency to Video Quality

	5 Vignette Storage System Design
	5.1 Overview of Vignette Storage
	5.2 Saliency Map Metadata
	5.3 Vignette Storage API
	5.4 Heuristic Search for Tiling

	6 Methodology
	6.1 Implementation
	6.2 Video Datasets
	6.3 Quantitative Quality Metrics

	7 Evaluation
	7.1 Storage and Bandwidth Savings
	7.2 Quality of Service
	7.3 Compute Overhead
	7.4 Analytical Model of Data Center and Mobile Costs

	8 Limitations and Future Work
	8.1 Vignette Design Limitations
	8.2 Evaluation Limitations

	9 Related Work
	9.1 Video Streaming and Storage Systems
	9.2 Saliency-based Compression

	10 Conclusion
	Acknowledgments
	References

